Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug 1;278(31):28395-402.
doi: 10.1074/jbc.M302932200. Epub 2003 May 15.

The stable isotope-based dynamic metabolic profile of butyrate-induced HT29 cell differentiation

Affiliations
Free article

The stable isotope-based dynamic metabolic profile of butyrate-induced HT29 cell differentiation

Joan Boren et al. J Biol Chem. .
Free article

Abstract

Stable isotope-based dynamic metabolic profiling is applied in this paper to elucidate the mechanism by which butyrate induces cell differentiation in HT29 cells. We utilized butyrate-sensitive (HT29) cells incubated with [1,2-13C2]glucose or [1,2-13C2]butyrate as single tracers to observe the changes in metabolic fluxes in these cells. In HT29 cells, increasing concentrations of butyrate inhibited glucose uptake, glucose oxidation, and nucleic acid ribose synthesis in a dose-dependent fashion. Glucose carbon utilization for de novo fatty acid synthesis and tricarboxylic acid cycle flux was replaced by butyrate. We also demonstrated that these changes are not present in butyrate-resistant pancreatic adenocarcinoma MIA cells. The results suggest that the mechanism by which colon carcinoma cells acquire a differentiated phenotype is through a replacement of glucose for butyrate as the main carbon source for macromolecule biosynthesis and energy production. This provides a better understanding of cell differentiation through metabolic adaptive changes in response to butyrate in HT29 cells, demonstrating that variations in metabolic pathway substrate flow are powerful regulators of tumor cell proliferation and differentiation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

  NODES
twitter 2