Parallel colour-opponent pathways to primary visual cortex
- PMID: 14668866
- DOI: 10.1038/nature02167
Parallel colour-opponent pathways to primary visual cortex
Abstract
The trichromatic primate retina parses the colour content of a visual scene into 'red/green' and 'blue/yellow' representations. Cortical circuits must combine the information encoded in these colour-opponent signals to reconstruct the full range of perceived colours. Red/green and blue/yellow inputs are relayed by the lateral geniculate nucleus (LGN) of thalamus to primary visual cortex (V1), so understanding how cortical circuits transform these signals requires understanding how LGN inputs to V1 are organized. Here we report direct recordings from LGN afferent axons in muscimol-inactivated V1. We found that blue/yellow afferents terminated exclusively in superficial cortical layers 3B and 4A, whereas red/green afferents were encountered only in deeper cortex, in lower layer 4C. We also describe a distinct cortical _target for 'blue-OFF' cells, whose afferents terminated in layer 4A and seemed patchy in organization. The more common 'blue-ON' afferents were found in 4A as well as lower layer 2/3. Chromatic information is thus conveyed to V1 by parallel, anatomically segregated colour-opponent systems, to be combined at a later stage of the colour circuit.
Similar articles
-
Visual spatial summation in macaque geniculocortical afferents.J Neurophysiol. 2006 Dec;96(6):3474-84. doi: 10.1152/jn.00734.2006. Epub 2006 Aug 23. J Neurophysiol. 2006. PMID: 16928793
-
Segregation of short-wavelength sensitive ("blue") cone signals among neurons in the lateral geniculate nucleus and striate cortex of marmosets.Vision Res. 2008 Nov;48(26):2604-14. doi: 10.1016/j.visres.2008.02.017. Epub 2008 Apr 7. Vision Res. 2008. PMID: 18397798
-
Temporal dynamics of chromatic tuning in macaque primary visual cortex.Nature. 1998 Oct 29;395(6705):896-900. doi: 10.1038/27666. Nature. 1998. PMID: 9804422
-
The dynamics of visual responses in the primary visual cortex.Prog Brain Res. 2007;165:21-32. doi: 10.1016/S0079-6123(06)65003-6. Prog Brain Res. 2007. PMID: 17925238 Review.
-
Functional cell classes and functional architecture in the early visual system of a highly visual rodent.Prog Brain Res. 2005;149:127-45. doi: 10.1016/S0079-6123(05)49010-X. Prog Brain Res. 2005. PMID: 16226581 Review.
Cited by
-
Laminar dependence of neuronal correlations in visual cortex.J Neurophysiol. 2013 Feb;109(4):940-7. doi: 10.1152/jn.00846.2012. Epub 2012 Nov 28. J Neurophysiol. 2013. PMID: 23197461 Free PMC article.
-
Segregation of short-wavelength-sensitive (S) cone signals in the macaque dorsal lateral geniculate nucleus.Eur J Neurosci. 2009 Oct;30(8):1517-26. doi: 10.1111/j.1460-9568.2009.06939.x. Epub 2009 Oct 12. Eur J Neurosci. 2009. PMID: 19821840 Free PMC article.
-
Chromatic gain controls in visual cortical neurons.J Neurosci. 2005 May 11;25(19):4779-92. doi: 10.1523/JNEUROSCI.5316-04.2005. J Neurosci. 2005. PMID: 15888653 Free PMC article.
-
A Computational Model of Direction Selectivity in Macaque V1 Cortex Based on Dynamic Differences between On and Off Pathways.J Neurosci. 2022 Apr 20;42(16):3365-3380. doi: 10.1523/JNEUROSCI.2145-21.2022. Epub 2022 Mar 3. J Neurosci. 2022. PMID: 35241489 Free PMC article.
-
Faithful Representation of Tactile Intensity under Different Contexts Emerges from the Distinct Adaptive Properties of the First Somatosensory Relay Stations.J Neurosci. 2015 May 6;35(18):6997-7002. doi: 10.1523/JNEUROSCI.4358-14.2015. J Neurosci. 2015. PMID: 25948252 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous