Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Jun;22(2):771-8.
doi: 10.1016/j.neuroimage.2004.01.036.

Hemodynamic and metabolic responses to neuronal inhibition

Affiliations

Hemodynamic and metabolic responses to neuronal inhibition

Bojana Stefanovic et al. Neuroimage. 2004 Jun.

Abstract

Functional magnetic resonance imaging (fMRI) was used to investigate the changes in blood oxygenation level dependent (BOLD) signal, cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMR(O(2))) accompanying neuronal inhibition. Eight healthy volunteers performed a periodic right-hand pinch grip every second using 5% of their maximum voluntary contraction (MVC), a paradigm previously shown to produce robust ipsilateral neuronal inhibition. To simultaneously quantify CBF and BOLD signals, an interleaved multislice pulsed arterial spin labeling (PASL) and T(2)*-weighted gradient echo sequence was employed. The CMR(O(2)) was calculated using the deoxyhemoglobin dilution model, calibrated by data measured during graded hypercapnia. In all subjects, BOLD, CBF and CMR(O(2)) signals increased in the contralateral and decreased in the ipsilateral primary motor (M1) cortex. The relative changes in CMR(O(2)) and CBF were linearly related, with a slope of approximately 0.4. The coupling ratio thus established for both positive and negative CMR(O(2)) and CBF changes is in close agreement with the ones observed by earlier studies investigating M1 perfusion and oxygen consumption increases. These findings characterize the hemodynamic and metabolic downregulation accompanying neuronal inhibition and thereby establish the sustained negative BOLD response as a marker of neuronal deactivation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

  NODES
twitter 2