Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium
- PMID: 15829355
- DOI: 10.1016/j.bpc.2004.12.001
Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium
Abstract
The principles of thermodynamics apply to both equilibrium and nonequilibrium biochemical systems. The mathematical machinery of the classic thermodynamics, however, mainly applies to systems in equilibrium. We introduce a thermodynamic formalism for the study of metabolic biochemical reaction (open, nonlinear) networks in both time-dependent and time-independent nonequilibrium states. Classical concepts in equilibrium thermodynamics-enthalpy, entropy, and Gibbs free energy of biochemical reaction systems-are generalized to nonequilibrium settings. Chemical motive force, heat dissipation rate, and entropy production (creation) rate, key concepts in nonequilibrium systems, are introduced. Dynamic equations for the thermodynamic quantities are presented in terms of the key observables of a biochemical network: stoichiometric matrix Q, reaction fluxes J, and chemical potentials of species mu without evoking empirical rate laws. Energy conservation and the Second Law are established for steady-state and dynamic biochemical networks. The theory provides the physiochemical basis for analyzing large-scale metabolic networks in living organisms.
Similar articles
-
Thermodynamic constraints for biochemical networks.J Theor Biol. 2004 Jun 7;228(3):327-33. doi: 10.1016/j.jtbi.2004.01.008. J Theor Biol. 2004. PMID: 15135031
-
Stoichiometric network theory for nonequilibrium biochemical systems.Eur J Biochem. 2003 Feb;270(3):415-21. doi: 10.1046/j.1432-1033.2003.03357.x. Eur J Biochem. 2003. PMID: 12542691 Review.
-
Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations.J Phys Chem B. 2006 Aug 10;110(31):15063-74. doi: 10.1021/jp061858z. J Phys Chem B. 2006. PMID: 16884217
-
Stochastic thermodynamics of chemical reaction networks.J Chem Phys. 2007 Jan 28;126(4):044101. doi: 10.1063/1.2428297. J Chem Phys. 2007. PMID: 17286456
-
Thermodynamics and evolution.J Theor Biol. 2000 Sep 7;206(1):1-16. doi: 10.1006/jtbi.2000.2106. J Theor Biol. 2000. PMID: 10968933 Review.
Cited by
-
Sarcomere lattice geometry influences cooperative myosin binding in muscle.PLoS Comput Biol. 2007 Jul;3(7):e115. doi: 10.1371/journal.pcbi.0030115. PLoS Comput Biol. 2007. PMID: 17630823 Free PMC article.
-
Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0.Nat Protoc. 2019 Mar;14(3):639-702. doi: 10.1038/s41596-018-0098-2. Nat Protoc. 2019. PMID: 30787451 Free PMC article.
-
Counting and correcting thermodynamically infeasible flux cycles in genome-scale metabolic networks.Metabolites. 2013 Oct 14;3(4):946-66. doi: 10.3390/metabo3040946. Metabolites. 2013. PMID: 24958259 Free PMC article.
-
Funneled landscape leads to robustness of cellular networks: MAPK signal transduction.Biophys J. 2006 Sep 1;91(5):L54-6. doi: 10.1529/biophysj.106.086777. Epub 2006 Jun 30. Biophys J. 2006. Retraction in: Biophys J. 2012 Jul 18;103(2):374. doi: 10.1016/j.bpj.2012.06.033 PMID: 16815898 Free PMC article. Retracted.
-
Quantifying the flux as the driving force for nonequilibrium dynamics and thermodynamics in non-Michaelis-Menten enzyme kinetics.Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):923-930. doi: 10.1073/pnas.1819572117. Epub 2019 Dec 26. Proc Natl Acad Sci U S A. 2020. PMID: 31879351 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials