Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct;289(4):F922-32.
doi: 10.1152/ajprenal.00057.2005. Epub 2005 May 24.

Dietary K+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct

Affiliations
Free article

Dietary K+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct

Fadi Najjar et al. Am J Physiol Renal Physiol. 2005 Oct.
Free article

Abstract

The cortical collecting duct (CCD) is a final site for regulation of K(+) homeostasis. CCD K(+) secretion is determined by the electrochemical gradient and apical permeability to K(+). Conducting secretory K(+) (SK/ROMK) and maxi-K channels are present in the apical membrane of the CCD, the former in principal cells and the latter in both principal and intercalated cells. Whereas SK channels mediate baseline K(+) secretion, maxi-K channels appear to participate in flow-stimulated K(+) secretion. Chronic dietary K(+) loading enhances the CCD K(+) secretory capacity due, in part, to an increase in SK channel density (Palmer et al., J Gen Physiol 104: 693-710, 1994). Long-term exposure of Ambystoma tigrinum to elevated K(+) increases renal K(+) excretion due to an increase in apical maxi-K channel density in their CDs (Stoner and Viggiano, J Membr Biol 162: 107-116, 1998). The purpose of the present study was to test whether K(+) adaptation in the mammalian CCD is associated with upregulation of maxi-K channel expression. New Zealand White rabbits were fed a low (LK), control (CK), or high (HK) K(+) diet for 10-14 days. Real-time PCR quantitation of message encoding maxi-K alpha- and beta(2-4)-subunits in single CCDs from HK animals was greater than that detected in CK and LK animals (P < 0.05); beta(1)-subunit was not detected in any CCD sample but was present in whole kidney. Indirect immunofluorescence microscopy revealed a predominantly intracellular distribution of alpha-subunits in LK kidneys. In contrast, robust apical labeling was detected primarily in alpha-intercalated cells in HK kidneys. In summary, K(+) adaptation is associated with an increase in steady-state abundance of maxi-K channel subunit-specific mRNAs and immunodetectable apical alpha-subunit, the latter observation consistent with redistribution from an intracellular pool to the plasma membrane.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources

  NODES
twitter 2