Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov;289(5):E864-9.
doi: 10.1152/ajpendo.00243.2005. Epub 2005 Jun 21.

Collagen synthesis in human musculoskeletal tissues and skin

Affiliations
Free article

Collagen synthesis in human musculoskeletal tissues and skin

J A Babraj et al. Am J Physiol Endocrinol Metab. 2005 Nov.
Free article

Abstract

We have developed a direct method for the measurement of human musculoskeletal collagen synthesis on the basis of the incorporation of stable isotope-labeled proline or leucine into protein and have used it to measure the rate of synthesis of collagen in tendon, ligament, muscle, and skin. In postabsorptive, healthy young men (28 +/- 6 yr) synthetic rates for tendon, ligament, muscle, and skin collagen were 0.046 +/- 0.005, 0.040 +/- 0.006, 0.016 +/- 0.002, and 0.037 +/- 0.003%/h, respectively (means +/- SD). In postabsorptive, healthy elderly men (70 +/- 6 yr) the rate of skeletal muscle collagen synthesis is greater than in the young (0.023 +/- 0.002%/h, P < 0.05 vs. young). The rates of synthesis of tendon and ligament collagen are similar to those of mixed skeletal muscle protein in the postabsorptive state, whereas the rate for muscle collagen synthesis is much lower in both young and elderly men. After nutrient provision, collagen synthesis was unaltered in tendon and skeletal muscle, remaining at postabsorptive values (young: tendon, 0.045 +/- 0.008%/h; muscle, 0.016 +/- 0.003%/h; elderly: muscle, 0.024 +/- 0.003%/h). These results demonstrate that the rate of human musculoskeletal tissue collagen synthesis can be directly and robustly measured using stable isotope methodology.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

  NODES
admin 1
twitter 2