Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Apr;290(4):F762-8.
doi: 10.1152/ajprenal.00181.2005.

Role of the JAK/STAT signaling pathway in diabetic nephropathy

Affiliations
Free article
Review

Role of the JAK/STAT signaling pathway in diabetic nephropathy

Mario B Marrero et al. Am J Physiol Renal Physiol. 2006 Apr.
Free article

Abstract

Excessive cellular growth is a major contributor to pathological changes associated with diabetic nephropathy. In particular, high glucose-induced growth of glomerular mesangial cells is a characteristic feature of diabetes-induced renal complications. Glomerular mesangial cells respond to traditional growth factors, although in diabetes this occurs in the context of an environment enriched in both circulating vasoactive mediators and high glucose. For example, the vasoactive peptide ANG II has been implicated in the pathogenesis of diabetic renal disease, and recent findings suggest that high glucose and ANG II activate intracellular signaling processes, including the polyol pathway and generation of reactive oxygen species. These pathways activate the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling cascades in glomerular mesangial cells. Activation of the JAK/STAT signaling cascade can stimulate excessive proliferation and growth of glomerular mesangial cells, contributing to diabetic nephropathy. This review focuses on some of the key elements in the diabetic microenvironment, especially high glucose and the accumulation of advanced glycoxidation end products and considers their impact on ANG II and other vasoactive peptide-mediated signaling events in vitro and in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

  NODES
chat 1
twitter 2