The role of the nonhomologous end-joining DNA double-strand break repair pathway in telomere biology
- PMID: 16822175
- DOI: 10.1146/annurev.genet.39.110304.095755
The role of the nonhomologous end-joining DNA double-strand break repair pathway in telomere biology
Abstract
Double-strand breaks are a cataclysmic threat to genome integrity. In higher eukaryotes the predominant recourse is the nonhomologous end-joining (NHEJ) double-strand break repair pathway. NHEJ is a versatile mechanism employing the Ku heterodimer, ligase IV/XRCC4 and a host of other proteins that juxtapose two free DNA ends for ligation. A critical function of telomeres is their ability to distinguish the ends of linear chromosomes from double-strand breaks, and avoid NHEJ. Telomeres accomplish this feat by forming a unique higher order nucleoprotein structure. Paradoxically, key components of NHEJ associate with normal telomeres and are required for proper length regulation and end protection. Here we review the biochemical mechanism of NHEJ in double-strand break repair, and in the response to dysfunctional telomeres. We discuss the ways in which NHEJ proteins contribute to telomere biology, and highlight how the NHEJ machinery and the telomere complex are evolving to maintain genome stability.
Similar articles
-
A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends.Mol Cell. 2007 May 11;26(3):323-34. doi: 10.1016/j.molcel.2007.03.023. Mol Cell. 2007. PMID: 17499040
-
[Double strand break repair, one mechanism can hide another: alternative non-homologous end joining].Cancer Radiother. 2012 Feb;16(1):1-10. doi: 10.1016/j.canrad.2011.05.004. Epub 2011 Jul 6. Cancer Radiother. 2012. PMID: 21737335 Review. French.
-
NHEJ Contributes to the Fast Repair of Radiation-induced DNA Double-strand Breaks at Late Prophase I Telomeres.Health Phys. 2018 Jul;115(1):102-107. doi: 10.1097/HP.0000000000000852. Health Phys. 2018. PMID: 29787435
-
Reconstitution of Mycobacterium marinum Nonhomologous DNA End Joining Pathway in Leishmania.mSphere. 2022 Jun 29;7(3):e0015622. doi: 10.1128/msphere.00156-22. Epub 2022 Jun 13. mSphere. 2022. PMID: 35695492 Free PMC article.
-
The Ku heterodimer: function in DNA repair and beyond.Mutat Res Rev Mutat Res. 2015 Jan-Mar;763:15-29. doi: 10.1016/j.mrrev.2014.06.002. Epub 2014 Jul 4. Mutat Res Rev Mutat Res. 2015. PMID: 25795113 Review.
Cited by
-
Oxidative DNA damage in neurons: implication of ku in neuronal homeostasis and survival.Int J Cell Biol. 2012;2012:752420. doi: 10.1155/2012/752420. Epub 2012 Jun 12. Int J Cell Biol. 2012. PMID: 22737170 Free PMC article.
-
Conservation of telomere protein complexes: shuffling through evolution.Crit Rev Biochem Mol Biol. 2009 Nov-Dec;44(6):434-46. doi: 10.3109/10409230903307329. Crit Rev Biochem Mol Biol. 2009. PMID: 19839711 Free PMC article. Review.
-
Mutually exclusive binding of telomerase RNA and DNA by Ku alters telomerase recruitment model.Cell. 2012 Mar 2;148(5):922-32. doi: 10.1016/j.cell.2012.01.033. Epub 2012 Feb 23. Cell. 2012. PMID: 22365814 Free PMC article.
-
POT1-TPP1 telomere length regulation and disease.Comput Struct Biotechnol J. 2020 Jul 3;18:1939-1946. doi: 10.1016/j.csbj.2020.06.040. eCollection 2020. Comput Struct Biotechnol J. 2020. PMID: 32774788 Free PMC article. Review.
-
An essential role for the DNA breakage-repair protein Ku80 in programmed DNA rearrangements in Tetrahymena thermophila.Mol Biol Cell. 2012 Jun;23(11):2213-25. doi: 10.1091/mbc.E11-11-0952. Epub 2012 Apr 18. Mol Biol Cell. 2012. PMID: 22513090 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases