Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep 15;15(18):2743-51.
doi: 10.1093/hmg/ddl210. Epub 2006 Aug 7.

Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models

Affiliations

Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models

Dagmar E Ehrnhoefer et al. Hum Mol Genet. .

Abstract

Huntington's disease (HD) is a progressive neurodegenerative disorder for which only symptomatic treatments of limited effectiveness are available. Preventing early misfolding steps and thereby aggregation of the polyglutamine (polyQ)-containing protein huntingtin (htt) in neurons of patients may represent an attractive therapeutic strategy to postpone the onset and progression of HD. Here, we demonstrate that the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) potently inhibits the aggregation of mutant htt exon 1 protein in a dose-dependent manner. Dot-blot assays and atomic force microscopy studies revealed that EGCG modulates misfolding and oligomerization of mutant htt exon 1 protein in vitro, indicating that it interferes with very early events in the aggregation process. Also, EGCG significantly reduced polyQ-mediated htt protein aggregation and cytotoxicity in an yeast model of HD. When EGCG was fed to transgenic HD flies overexpressing a pathogenic htt exon 1 protein, photoreceptor degeneration and motor function improved. These results indicate that modulators of htt exon 1 misfolding and oligomerization like EGCG are likely to reduce polyQ-mediated toxicity in vivo. Our studies may provide the basis for the development of a novel pharmacotherapy for HD and related polyQ disorders.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

  NODES
chat 1
twitter 2