Optical properties of metallic films for vertical-cavity optoelectronic devices
- PMID: 18286006
- DOI: 10.1364/ao.37.005271
Optical properties of metallic films for vertical-cavity optoelectronic devices
Abstract
We present models for the optical functions of 11 metals used as mirrors and contacts in optoelectronic and optical devices: noble metals (Ag, Au, Cu), aluminum, beryllium, and transition metals (Cr, Ni, Pd, Pt, Ti, W). We used two simple phenomenological models, the Lorentz-Drude (LD) and the Brendel-Bormann (BB), to interpret both the free-electron and the interband parts of the dielectric response of metals in a wide spectral range from 0.1 to 6 eV. Our results show that the BB model was needed to describe appropriately the interband absorption in noble metals, while for Al, Be, and the transition metals both models exhibit good agreement with the experimental data. A comparison with measurements on surface normal structures confirmed that the reflectance and the phase change on reflection from semiconductor-metal interfaces (including the case of metallic multilayers) can be accurately described by use of the proposed models for the optical functions of metallic films and the matrix method for multilayer calculations.
Similar articles
-
Alloying: A Platform for Metallic Materials with On-Demand Optical Response.Acc Chem Res. 2019 Oct 15;52(10):2881-2891. doi: 10.1021/acs.accounts.9b00153. Epub 2019 Jul 15. Acc Chem Res. 2019. PMID: 31305980
-
Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared.Appl Opt. 1983 Apr 1;22(7):1099-20. doi: 10.1364/ao.22.001099. Appl Opt. 1983. PMID: 18195926
-
On a causal dispersion model for the optical properties of metals.Appl Opt. 2018 Jul 1;57(19):5333-5347. doi: 10.1364/AO.57.005333. Appl Opt. 2018. PMID: 30117825
-
All-dielectric resonant cavity-enabled metals with broadband optical transparency.Nanotechnology. 2017 Jun 9;28(23):235202. doi: 10.1088/1361-6528/aa6f8a. Nanotechnology. 2017. PMID: 28516899
-
Synthesis of Metallic Nanocrystals: From Noble Metals to Base Metals.Materials (Basel). 2019 May 8;12(9):1497. doi: 10.3390/ma12091497. Materials (Basel). 2019. PMID: 31071982 Free PMC article. Review.
Cited by
-
Fano enhancement of SERS for rapid early diagnosis of colorectal cancer.Nanoscale Adv. 2024 Sep 30;6(23):5949-59. doi: 10.1039/d4na00543k. Online ahead of print. Nanoscale Adv. 2024. PMID: 39364295 Free PMC article.
-
Optimization of Colloidal Gold Nanoparticles on Porous Anodic Aluminum Oxide Substrates for Refractometric Sensing.ACS Omega. 2022 Oct 28;7(44):40324-40332. doi: 10.1021/acsomega.2c05305. eCollection 2022 Nov 8. ACS Omega. 2022. PMID: 36385891 Free PMC article.
-
Development of nanogap-rich hybrid gold nanostructures by use of two non-lithographic deposition techniques for a sensitive and reliable SERS biosensor.Biomed Eng Lett. 2024 May 29;14(4):859-866. doi: 10.1007/s13534-024-00381-4. eCollection 2024 Jul. Biomed Eng Lett. 2024. PMID: 38946823
-
Underlying Subwavelength Aperture Architecture Drives the Optical Properties of Microcavity Surface Plasmon Resonance Sensors.Sensors (Basel). 2020 Aug 30;20(17):4906. doi: 10.3390/s20174906. Sensors (Basel). 2020. PMID: 32872658 Free PMC article.
-
Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate.Sci Rep. 2016 Sep 2;6:32314. doi: 10.1038/srep32314. Sci Rep. 2016. PMID: 27586562 Free PMC article.
LinkOut - more resources
Other Literature Sources
Research Materials