Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May;10(5):619-24.
doi: 10.1038/ncb1725. Epub 2008 Apr 20.

Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells

Affiliations

Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells

Khalid Al-Nedawi et al. Nat Cell Biol. 2008 May.

Erratum in

  • Nat Cell Biol. 2008 Jun;10(6):752

Abstract

Aggressive human brain tumours (gliomas) often express a truncated and oncogenic form of the epidermal growth factor receptor, known as EGFRvIII. Within each tumour only a small percentage of glioma cells may actually express EGFRvIII; however, most of the cells exhibit a transformed phenotype. Here we show that EGFRvIII can be 'shared' between glioma cells by intercellular transfer of membrane-derived microvesicles ('oncosomes'). EGFRvIII expression in indolent glioma cells stimulates formation of lipid-raft related microvesicles containing EGFRvIII. Microvesicles containing this receptor are then released to cellular surroundings and blood of tumour-bearing mice, and can merge with the plasma membranes of cancer cells lacking EGFRvIII. This event leads to the transfer of oncogenic activity, including activation of transforming signalling pathways (MAPK and Akt), changes in expression of EGFRvIII-regulated genes (VEGF, Bcl-x(L), p27), morphological transformation and increase in anchorage-independent growth capacity. Thus, membrane microvesicles of cancer cells can contribute to a horizontal propagation of oncogenes and their associated transforming phenotype among subsets of cancer cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

  NODES
twitter 2