Vorinostat and sorafenib synergistically kill tumor cells via FLIP suppression and CD95 activation
- PMID: 18765530
- PMCID: PMC2561272
- DOI: 10.1158/1078-0432.CCR-08-0469
Vorinostat and sorafenib synergistically kill tumor cells via FLIP suppression and CD95 activation
Abstract
Purpose and design: Mechanism(s) by which the multikinase inhibitor sorafenib and the histone deacetylase inhibitor vorinostat interact to kill hepatic, renal, and pancreatic adenocarcinoma cells has been defined.
Results: Low doses of sorafenib and vorinostat interacted in vitro in a synergistic fashion to kill hepatic, renal, and pancreatic adenocarcinoma cells in multiple short-term viability (24-96 h) and in long-term colony formation assays. Cell killing was suppressed by inhibition of cathepsin proteases and caspase-8 and, to a lesser extent, by inhibition of caspase-9. Twenty-four hours after exposure, the activities of extracellular signal-regulated kinase 1/2, AKT, and nuclear factor-kappaB were only modestly modulated by sorafenib and vorinostat treatment. However, 24 h after exposure, sorafenib- and vorinostat-treated cells exhibited markedly diminished expression of c-FLIP-s, full-length BID, BCL-2, BCL-XL, MCL-1, XIAP, increased expression of BIM, and increased activation of BAX, BAK, and BAD. Expression of eIF2alpha S51A blocked sorafenib- and vorinostat-induced suppression of c-FLIP-s levels and overexpression of c-FLIP-s abolished lethality. Sorafenib and vorinostat treatment increased surface levels of CD95 and CD95 association with caspase-8. Knockdown of CD95 or FADD expression significantly reduced sorafenib/vorinostat-mediated lethality.
Conclusions: These data show that combined exposure of epithelial tumor cell types to sorafenib and vorinostat diminishes expression of multiple antiapoptotic proteins and promotes activation of the CD95 extrinsic apoptotic and the lysosomal protease pathways, and that suppression of c-FLIP-s expression represents a critical event in transduction of the proapoptotic signals from CD95 to promote mitochondrial dysfunction and death.
Figures
Similar articles
-
BCL-2 family inhibitors enhance histone deacetylase inhibitor and sorafenib lethality via autophagy and overcome blockade of the extrinsic pathway to facilitate killing.Mol Pharmacol. 2009 Aug;76(2):327-41. doi: 10.1124/mol.109.056309. Epub 2009 May 29. Mol Pharmacol. 2009. PMID: 19483105 Free PMC article.
-
Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation.Cancer Biol Ther. 2008 Oct;7(10):1648-62. doi: 10.4161/cbt.7.10.6623. Epub 2008 Oct 12. Cancer Biol Ther. 2008. PMID: 18787411 Free PMC article.
-
Sorafenib and vorinostat kill colon cancer cells by CD95-dependent and -independent mechanisms.Mol Pharmacol. 2009 Aug;76(2):342-55. doi: 10.1124/mol.109.056523. Epub 2009 May 29. Mol Pharmacol. 2009. PMID: 19483104 Free PMC article.
-
Vorinostat and sorafenib increase CD95 activation in gastrointestinal tumor cells through a Ca(2+)-de novo ceramide-PP2A-reactive oxygen species-dependent signaling pathway.Cancer Res. 2010 Aug 1;70(15):6313-24. doi: 10.1158/0008-5472.CAN-10-0999. Epub 2010 Jul 14. Cancer Res. 2010. PMID: 20631069 Free PMC article.
-
Sorafenib activates CD95 and promotes autophagy and cell death via Src family kinases in gastrointestinal tumor cells.Mol Cancer Ther. 2010 Aug;9(8):2220-31. doi: 10.1158/1535-7163.MCT-10-0274. Epub 2010 Aug 3. Mol Cancer Ther. 2010. PMID: 20682655 Free PMC article.
Cited by
-
Sorafenib/regorafenib and phosphatidyl inositol 3 kinase/thymoma viral proto-oncogene inhibition interact to kill tumor cells.Mol Pharmacol. 2013 Oct;84(4):562-71. doi: 10.1124/mol.113.088005. Epub 2013 Jul 22. Mol Pharmacol. 2013. PMID: 23877009 Free PMC article.
-
Overcoming Resistance of Cancer Cells to PARP-1 Inhibitors with Three Different Drug Combinations.PLoS One. 2016 May 19;11(5):e0155711. doi: 10.1371/journal.pone.0155711. eCollection 2016. PLoS One. 2016. PMID: 27196668 Free PMC article.
-
Modification of Epigenetic Histone Acetylation in Hepatocellular Carcinoma.Cancers (Basel). 2018 Jan 3;10(1):8. doi: 10.3390/cancers10010008. Cancers (Basel). 2018. PMID: 29301348 Free PMC article. Review.
-
The role of cell signalling in the crosstalk between autophagy and apoptosis.Cell Signal. 2014 Mar;26(3):549-55. doi: 10.1016/j.cellsig.2013.11.028. Epub 2013 Dec 2. Cell Signal. 2014. PMID: 24308968 Free PMC article. Review.
-
Sorafenib sensitizes hepatocellular carcinoma cells to physiological apoptotic stimuli.J Cell Physiol. 2012 Apr;227(4):1319-25. doi: 10.1002/jcp.22843. J Cell Physiol. 2012. PMID: 21604268 Free PMC article.
References
-
- Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics 2002. CA Cancer J Clin. 2005;55:74–108. - PubMed
-
- Akriviadis EA, Llovet JM, Efremidis SC, et al. Hepatocellular carcinoma. Br J Surg. 1998;85:1319–1331. - PubMed
-
- Dent P. MAP kinase pathways in the control of hepatocyte growth, metabolism and survival. In: Dufour JF, Clavien P-A, editors. Signaling Pathways in Liver Diseases. Springer Press; 2005. pp. 223–238. Chapter 19.
-
- Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S. MAPK pathways in radiation responses. Oncogene. 2003;22:5885–5896. - PubMed
-
- Valerie K, Yacoub A, Hagan MP, et al. Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther. 2007;6:789–801. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- R01 CA108520-03/CA/NCI NIH HHS/United States
- R01 CA108520/CA/NCI NIH HHS/United States
- R01-CA77141/CA/NCI NIH HHS/United States
- R01 CA063753/CA/NCI NIH HHS/United States
- R01-DK52825/DK/NIDDK NIH HHS/United States
- P01 CA104177-030002/CA/NCI NIH HHS/United States
- P01 CA104177/CA/NCI NIH HHS/United States
- R01 DK052825/DK/NIDDK NIH HHS/United States
- P01-CA104177/CA/NCI NIH HHS/United States
- R01-CA108520/CA/NCI NIH HHS/United States
- R01-CA63753/CA/NCI NIH HHS/United States
- R01 DK052825-09/DK/NIDDK NIH HHS/United States
LinkOut - more resources
Full Text Sources
Research Materials