Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009;182(1):49-84.
doi: 10.1111/j.1469-8137.2008.02738.x. Epub 2009 Jan 13.

Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine

Affiliations
Free article
Review

Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine

Philip J White et al. New Phytol. 2009.
Free article

Abstract

The diets of over two-thirds of the world's population lack one or more essential mineral elements. This can be remedied through dietary diversification, mineral supplementation, food fortification, or increasing the concentrations and/or bioavailability of mineral elements in produce (biofortification). This article reviews aspects of soil science, plant physiology and genetics underpinning crop biofortification strategies, as well as agronomic and genetic approaches currently taken to biofortify food crops with the mineral elements most commonly lacking in human diets: iron (Fe), zinc (Zn), copper (Cu), calcium (Ca), magnesium (Mg), iodine (I) and selenium (Se). Two complementary approaches have been successfully adopted to increase the concentrations of bioavailable mineral elements in food crops. First, agronomic approaches optimizing the application of mineral fertilizers and/or improving the solubilization and mobilization of mineral elements in the soil have been implemented. Secondly, crops have been developed with: increased abilities to acquire mineral elements and accumulate them in edible tissues; increased concentrations of 'promoter' substances, such as ascorbate, beta-carotene and cysteine-rich polypeptides which stimulate the absorption of essential mineral elements by the gut; and reduced concentrations of 'antinutrients', such as oxalate, polyphenolics or phytate, which interfere with their absorption. These approaches are addressing mineral malnutrition in humans globally.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Abadía J, López-Millán A-F, Rombolà A, Abadía A. 2002. Organic acids and Fe deficiency: a review. Plant and Soil 241: 75-86.
    1. Abbo S, Grusak MA, Tzuk T, Reifen R. 2000. Genetic control of seed weight and calcium concentration in chickpea seed. Plant Breeding 119: 427-431.
    1. Abbo S, Molina C, Jungmann R, Grusak MA, Berkovitch Z, Reifen R, Kahl G, Winter P, Reifen R. 2005. Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.). Theoretical and Applied Genetics 111: 185-195.
    1. Abdalla AA, El Tinay AH, Mohamed BE, Abdalla AH. 1998. Proximate composition, starch, phytate and mineral contents of 10 pearl millet genotypes. Food Chemistry 63: 243-246.
    1. Abdel-Ghany SE, Müller-Moulé P, Niyogi KK, Pilon M, Shikanai T. 2005. Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17: 1233-1251.

Publication types

LinkOut - more resources

  NODES
Association 1
twitter 2