Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Mar;73(3):411-8.
doi: 10.1253/circj.cj-08-1102. Epub 2009 Feb 4.

Endothelial function and oxidative stress in cardiovascular diseases

Affiliations
Free article
Review

Endothelial function and oxidative stress in cardiovascular diseases

Yukihito Higashi et al. Circ J. 2009 Mar.
Free article

Abstract

The vascular endothelium is involved in the release of various vasodilators, including nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factor, as well as vasoconstrictors. NO plays an important role in the regulation of vascular tone, inhibition of platelet aggregation, and suppression of smooth muscle cell proliferation. Endothelial dysfunction is the initial step in the pathogenesis of atherosclerosis. Cardiovascular diseases are associated with endothelial dysfunction. It is well known that the grade of endothelial function is a predictor of cardiovascular outcomes. Oxidative stress plays an important role in the pathogenesis and development of cardiovascular diseases. Several mechanisms contribute to impairment of endothelial function. An imbalance of reduced production of NO or increased production of reactive oxygen species, mainly superoxide, may promote endothelial dysfunction. One mechanism by which endothelium-dependent vasodilation is impaired is an increase in oxidative stress that inactivates NO. This review focuses on recent findings and interaction between endothelial function and oxidative stress in cardiovascular diseases.

PubMed Disclaimer

Similar articles

Cited by

  NODES
Association 1
twitter 2