Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;49(2):89-118.
doi: 10.2165/11318150-000000000-00000.

Bone physiology, disease and treatment: towards disease system analysis in osteoporosis

Affiliations
Review

Bone physiology, disease and treatment: towards disease system analysis in osteoporosis

Teun M Post et al. Clin Pharmacokinet. 2010.

Abstract

Osteoporosis is a chronic progressive disorder and is regarded as an important worldwide health issue. The development of novel treatments and the comparison of the effects of novel and existing treatments in osteoporosis are complicated by the difficulties of establishing drug effects on disease progression, as reflected in the slowly changing primary biomarker, bone mineral density. In recent years, research has considerably improved our understanding of the pathophysiology of osteoporosis. Specifically, various biomarkers have been identified that reflect bone physiology at the cellular level. These biomarkers mirror the dynamics of bone formation and degradation on a shorter timescale than bone mineral density as a composite measure. These markers can therefore, in principle, be used to characterize the underlying regulatory system and to quantify drug effects in osteoporosis. Recently, the concept of disease system analysis has been proposed as a novel approach to characterize, in a strictly quantitative manner, drug effects on disease progression. This approach integrates physiology, disease progression and drug treatment in a comprehensive mechanism-based model, using dynamic information on a network of biomarkers. This review focuses on the use of disease system analysis for the characterization of drug effects on osteoporosis. It is concluded that, although the development of fully mechanistic disease system models may be practically impossible, parsimonious--but mechanism-based--disease system models may ultimately be used to adequately predict the long-term effects of drug treatment on clinical outcomes.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Osteoporos Int. 2006 Feb;17(2):313-6 - PubMed
    1. J Cell Biochem. 1994 Jul;55(3):273-86 - PubMed
    1. Osteoporos Int. 2004 Mar;15(3):231-7 - PubMed
    1. Bone. 2006 Dec;39(6):1173-81 - PubMed
    1. Bone. 2004 Oct;35(4):918-28 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources

  NODES
twitter 2