Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar;76(6):1789-95.
doi: 10.1128/AEM.02350-09. Epub 2010 Jan 29.

Molecular indicators used in the development of predictive models for microbial source tracking

Affiliations

Molecular indicators used in the development of predictive models for microbial source tracking

Elisenda Ballesté et al. Appl Environ Microbiol. 2010 Mar.

Abstract

A number of chemical, microbial, and eukaryotic indicators have been proposed as indicators of fecal pollution sources in water bodies. No single one of the indicators tested to date has been able to determine the source of fecal pollution in water. However, the combined use of different indicators has been demonstrated to be the best way of defining predictive models suitable for determining fecal pollution sources. Molecular methods are promising tools that could complement standard microbiological water analysis. In this study, the feasibility of some proposed molecular indicators for microbial source tracking (MST) was compared (names of markers are in parentheses): host-specific Bacteroidetes (HF134, HF183, CF128, and CF193), Bifidobacterium adolescentis (ADO), Bifidobacterium dentium (DEN), the gene esp of Enterococcus faecium, and host-specific mitochondrial DNA associated with humans, cattle, and pigs (Humito, Bomito, and Pomito, respectively). None of the individual molecular markers tested enabled 100% source identification. They should be combined with other markers to raise sensitivity and specificity and increase the number of sources that are identified. MST predictive models using only these molecular markers were developed. The models were evaluated by considering the lowest number of molecular indicators needed to obtain the highest rate of identification of fecal sources. The combined use of three molecular markers (ADO, Bomito, and Pomito) enabled correct identification of 75.7% of the samples, with differentiation between human, swine, bovine, and poultry sources. Discrimination between human and nonhuman fecal pollution was possible using two markers: ADO and Pomito (84.6% correct identification). The percentage of correct identification increased with the number of markers analyzed. The best predictive model for distinguishing human from nonhuman fecal sources was based on 5 molecular markers (HF134, ADO, DEN, Bomito, and Pomito) and provided 90.1% correct classification.

PubMed Disclaimer

Figures

FIG. 1.
FIG. 1.
Decision trees developed in the samples. Each decision leaf is shown in the format g(s/m), where g is the most frequent group at the leaf (the predicted group), s is the mean number of samples at the leaf, and m is the number of errors at the leaf. ?, the marker could not be analyzed.

Similar articles

Cited by

References

    1. Ahmed, W., J. Stewart, T. Gardner, D. Powell, P. Brooks, D. Sullivan, and N. Tindale. 2007. Sourcing faecal pollution: a combination of library-dependent and library-independent methods to identify human faecal pollution in non-sewered catchments. Water Res. 41:3771-3779. - PubMed
    1. Ahmed, W., J. Stewart, D. Powell, and T. Gardner. 2008. Evaluation of Bacteroides markers for the detection of human faecal pollution. Lett. Appl. Microbiol. 46:237-242. - PubMed
    1. Allsop, K., and D. J. Stickler. 1985. An assessment of Bacteroides fragilis group organisms as indicators of human faecal pollution. J. Appl. Bacteriol. 58:95-99. - PubMed
    1. Baker-Austin, C., J. Morris, J. A. Lowther, R. Rangdale, and D. N. Lees. 2009. Rapid identification and differentiation of agricultural faecal contamination sources using multiplex PCR. Lett. Appl. Microbiol. 49:529-532. - PubMed
    1. Bernhard, A. E., and K. G. Field. 2000. A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides-Prevotella genes encoding 16S rRNA. Appl. Environ. Microbiol. 66:4571-4574. - PMC - PubMed

Publication types

  NODES
twitter 2