Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan;3(1):46-9.
doi: 10.4161/cib.3.1.9635.

Phosphorylation and dephosphorylation events allow for rapid segregation of fate determinants during Drosophila neuroblast asymmetric divisions

Phosphorylation and dephosphorylation events allow for rapid segregation of fate determinants during Drosophila neuroblast asymmetric divisions

Rita Sousa-Nunes et al. Commun Integr Biol. 2010 Jan.

Abstract

Drosophila neuroblasts display remarkable asymmetry throughout mitosis. The most prominent asymmetry is the size difference between daughter cells at cytokinesis. The larger cell retains stem cell identity, i.e., remains a neuroblast while the smaller cell, called a ganglion mother cell (GMC), will generate differentiated neural and glial progeny. Preceding this size difference, several protein complexes localize to opposite sides of the neuroblast cortex (apical and basal in the embryo and, by analogy, referred to as such in larval neuroblasts although their asymmetry no longer correlates with such axis). The plane of division is coordinated with this molecular asymmetry such that apical and basal complexes are unequally partitioned between the two daughter cells: apical complexes are inherited by the self-renewing neuroblast while basal complexes are inherited by the GMC. This unequal segregation has been extensively shown to be functionally significant. Apical complexes contain factors required for cellular selfrenewal and basal complexes contain factors required for the differentiation of the GMC progeny. Curiously, however, some "basal" neuroblast proteins such as the scaffold protein Miranda (Mira) and its associated fate determinant Prospero (Pros), are initially apically localized prior to translocating to the opposite side of the cell cortex by the onset of mitosis. This is because mira mRNA is apically enriched, where it remains throughout the cell cycle, suggesting that Mira protein is translated within the apical environment.1,2 The transition from apical to basal enrichment of Mira and Pros takes place within minutes.2 Here, we summarize the known phosphorylation events and roles during neuroblast asymmetric divisions, as well as very recent work, including our own, identifying the first protein phosphatases implicated in this process. We then discuss models previously proposed, as well as a new model, for apical-to-basal transition of the Mira complex in light of our new results.

Keywords: Drosophila; Miranda; asymmetric cell division; neuroblast; phosphorylation; polarity.

PubMed Disclaimer

Comment on

Similar articles

Cited by

References

    1. Schuldt AJ, Adams JH, Davidson CM, Micklem DR, Haseloff J, St Johnston D, et al. Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes Dev. 1998;12:1847–1857. - PMC - PubMed
    1. Erben V, Waldhuber M, Langer D, Fetka I, Jansen RP, Petritsch C. Asymmetric localization of the adaptor protein Miranda in neuroblasts is achieved by diffusion and sequential interaction of Myosin II and VI. J Cell Sci. 2008;121:1403. - PubMed
    1. Chia W, Somers WG, Wang H. Drosophila neuroblast asymmetric divisions: cell cycle regulators, asymmetric protein localization and tumorigenesis. J Cell Biol. 2008;180:267. - PMC - PubMed
    1. Broadus J, Doe CQ. Extrinsic cues, intrinsic cues and microfilaments regulate asymmetric protein localization in Drosophila neuroblasts. Curr Biol. 1997;7:827. - PubMed
    1. Betschinger J, Mechtler K, Knoblich JA. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature. 2003;422:326. - PubMed

LinkOut - more resources

  NODES
twitter 2