Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Dec;5(12):2373-9.
doi: 10.2215/CJN.08160910. Epub 2010 Nov 4.

Lipotoxicity in diabetic nephropathy: the potential role of fatty acid oxidation

Affiliations
Review

Lipotoxicity in diabetic nephropathy: the potential role of fatty acid oxidation

Mariana Murea et al. Clin J Am Soc Nephrol. 2010 Dec.

Abstract

Cellular toxicity mediated by lipids (lipotoxicity) has been implicated in the pathophysiology of metabolic syndrome and diabetes mellitus. Genetic analyses now implicate lipotoxicity in susceptibility to type 2 diabetes mellitus-associated nephropathy (T2DN), a pathway that had previously been unexplored. A genome-wide association study in Japanese patients identified a single nucleotide polymorphism in the acetyl-CoA carboxylase β (ACACB) gene associated with T2DN. Replication analyses suggest that this same polymorphism may be a diabetic nephropathy risk allele in other ethnic groups. The ACACB gene (also called ACC2 or acetyl-CoA carboxylase 2) plays a critical role in intracellular fatty acid (FA) oxidation. This manuscript reviews the physiology of FA metabolism and adverse cellular effects that can result from dysregulation of this process. It is hypothesized that glomerular and tubular dysfunction can be induced by increases in intracellular FA concentrations, a process that may be enabled by genetic risk variants. This novel glucolipotoxicity hypothesis in T2DN warrants further investigation.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

  NODES
Association 2
INTERN 2
twitter 2