Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Mar;123(3):996-1002.
doi: 10.1172/JCI66370. Epub 2013 Mar 1.

Telomeres and age-related disease: how telomere biology informs clinical paradigms

Affiliations
Review

Telomeres and age-related disease: how telomere biology informs clinical paradigms

Mary Armanios. J Clin Invest. 2013 Mar.

Abstract

Telomere length shortens with age and predicts the onset of replicative senescence. Recently, short telomeres have been linked to the etiology of degenerative diseases such as idiopathic pulmonary fibrosis, bone marrow failure, and cryptogenic liver cirrhosis. These disorders have recognizable clinical manifestations, and the telomere defect explains their genetics and informs the approach to their treatment. Here, I review how telomere biology has become intimately connected to clinical paradigms both for understanding pathophysiology and for individualizing therapy decisions. I also critically examine nuances of interpreting telomere length measurement in clinical studies.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Clinical manifestations of telomere disorders and their onset relative to tissue turnover rate.
Shown are representative images of diagnostic histopathology and radiographic studies in patients with telomere-mediated disease (AD) and 5-ethynyl-2′-deoxyuridine (EdU) incorporation detected in corresponding mouse tissues (EH). The estimated turnover rate of more than 90% of cells is indicated for each pair of images. (A) Photomicrograph of a bone marrow biopsy showing an acellular marrow replaced by adipose tissue with only remnants of hematopoiesis, taken from an individual with aplastic anemia. Image reproduced with permission from Annual Reviews of Genomics and Human Genetics (31). (B) Histopathology of a duodenal biopsy from a patient with telomere-mediated enteropathy shows profound villous atrophy. Image reproduced with permission from Aging Cell (53). (C) Abdominal CT scan image from a patient with liver cirrhosis, as evidenced by the nodular liver surface, the caudate lobe hypertrophy, and splenomegaly. (D) Lung windows of a chest CT scan from a carrier of the telomerase mutation show classic basilar honeycombing changes pathognomonic for IPF. (E) Flow cytometry plot of EdU incorporation in the bone marrow after a short (2-hour) pulse, showing that nearly one-third of the cells have undergone division. (F) Immunohistochemistry of intestinal section after a EdU pulse (5 days) shows that nearly all enteric epithelial cells are positively labeled (brown). (G) Brown staining shows EdU-labeled hepatocytes after EdU labeling (14 days). (H) Image of terminal bronchiole shows EdU-positive lung epithelial cells (red) identified by the Clara cell antigen (green) after 14 day label.
Figure 2
Figure 2. Model for understanding the mechanisms of telomere-mediated disease in high- and low-turnover tissues.
In high-turnover tissues (left), cell replication is the primary determinant of disease onset. In contrast, in low-turnover tissues (right), other genetic and acquired hits contribute to disease onset. In both cases, telomere dysfunction induces apoptosis and/or senescence. The senescence phenotype may be associated with gene expression changes, mitochondrial dysfunction, aberrant Ca2+ signaling, and the SASP.
Figure 3
Figure 3. Telomere syndromes have defined pathological ranges of telomere shortening.
Although short telomere length (TL) has been associated with numerous conditions, in some cases, the shortening reflects acquired replicative stress states rather than telomere-driven degenerative changes. (A) Putative dataset showing large effect size and short telomere length outside of the normal age-adjusted range. (B) Small and statistically significant change in telomere length in hypothetical dataset is less likely to reflect a telomere-mediated process.

Similar articles

Cited by

References

    1. Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med. 2006;12(10):1133–1138. doi: 10.1038/nm1006-1133. - DOI - PubMed
    1. Moyzis RK, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A. 1988;85(18):6622–6626. - PMC - PubMed
    1. Allshire RC, et al. Telomeric repeat from T. thermophila cross hybridizes with human telomeres. Nature. 1988;332(6165):656–659. doi: 10.1038/332656a0. - DOI - PubMed
    1. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci U S A. 1994;91(21):9857–9860. doi: 10.1073/pnas.91.21.9857. - DOI - PMC - PubMed
    1. Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet. 2008;42:301–334. doi: 10.1146/annurev.genet.41.110306.130350. - DOI - PubMed

Publication types

  NODES
Association 1
twitter 2