Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar 7:3:38.
doi: 10.3389/fonc.2013.00038. eCollection 2013.

Pyruvate dehydrogenase kinase as a novel therapeutic _target in oncology

Affiliations

Pyruvate dehydrogenase kinase as a novel therapeutic _target in oncology

Gopinath Sutendra et al. Front Oncol. .

Abstract

Current drug development in oncology is non-selective as it typically focuses on pathways essential for the survival of all dividing cells. The unique metabolic profile of cancer, which is characterized by increased glycolysis and suppressed mitochondrial glucose oxidation (GO) provides cancer cells with a proliferative advantage, conducive with apoptosis resistance and even increased angiogenesis. Recent evidence suggests that _targeting the cancer-specific metabolic and mitochondrial remodeling may offer selectivity in cancer treatment. Pyruvate dehydrogenase kinase (PDK) is a mitochondrial enzyme that is activated in a variety of cancers and results in the selective inhibition of pyruvate dehydrogenase, a complex of enzymes that converts cytosolic pyruvate to mitochondrial acetyl-CoA, the substrate for the Krebs' cycle. Inhibition of PDK with either small interfering RNAs or the orphan drug dichloroacetate (DCA) shifts the metabolism of cancer cells from glycolysis to GO and reverses the suppression of mitochondria-dependent apoptosis. In addition, this therapeutic strategy increases the production of diffusible Krebs' cycle intermediates and mitochondria-derived reactive oxygen species, activating p53 or inhibiting pro-proliferative and pro-angiogenic transcription factors like nuclear factor of activated T cells and hypoxia-inducible factor 1α. These effects result in decreased tumor growth and angiogenesis in a variety of cancers with high selectivity. In a small but mechanistic clinical trial in patients with glioblastoma, a highly aggressive and vascular form of brain cancer, DCA decreased tumor angiogenesis and tumor growth, suggesting that metabolic-_targeting therapies can be translated directly to patients. More recently, the M2 isoform of pyruvate kinase (PKM2), which is highly expressed in cancer, is associated with suppressed mitochondrial function. Similar to DCA, activation of PKM2 in many cancers results in increased mitochondrial function and decreased tumor growth. Therefore, reversing the mitochondrial suppression with metabolic-modulating drugs, like PDK inhibitors or PKM2 activators holds promise in the rapidly expanding field of metabolic oncology.

Keywords: apoptosis resistance; dichloroacetate; hypoxia-inducible factor 1α; mitochondria; pyruvate dehydrogenase kinase; tumor metabolism.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Structure of pyruvate dehdyrogenase kinase 2 (PDK2) bound with dichloroacetate (DCA). Surface and ribbon representation of PDK2 with DCA bound is shown. The carboxylate group of DCA forms a salt bridge (double black line) with arginine 154 of PDK2. The structures were generated using visual molecular dynamics (VMD) version 1.8.6 with the coordinates acquired from Protein Data Bank (PDB#2BU8; Knoechel et al., 2006). L53 (leucine 53), I111 (lsoleucine 111), H115 (histidine 115), R112 (arginine 112), R154 (arginine 154). Black lines indicate salt bride between R154 and DCA.
FIGURE 2
FIGURE 2
(A)DCA increases the survival (left) and decreases the tumor growth (right) of xenotransplant animals with nSCLC tumors. (B) DCA-treated animals have tumors with decreased vascularity (top) and decreased nuclear localization of hypoxia-inducible factor 1α (HIF1α; red, nuclear stain DAPI: blue) and angiogenesis (lectin: green, middle panel). DCA-treated animals have decreased glucose uptake in the tumors as indicated by PET imaging and 18-flurodexoglucose uptake (bottom panel). (C) DCA-treated animals have decreased metastases of the lung after tail vein injection of metastatic breast cancer. Figure modified with permission from (Sun et al., 2010; Sutendra et al., 2012).
FIGURE 3
FIGURE 3
Mechanism of DCA in cancer: DCA inhibits pyruvate dehydrogenase kinase (PDK) resulting in activation of pyruvate dehydrogensae (PDH). By increasing mitochondrial-based GO and acetyl-CoA levels, DCA increases Krebs’ cycle and electron transport chain activity, increasing mitochondrial-derived reactive oxygen species (mROS) and α-ketoglutarate (αKG) levels. This results in decreased activation of pro-proliferative transcription factors, like NFAT and HIF1α and increasing the activity of Kv channels and the tumor suppressor protein p53.
FIGURE 4
FIGURE 4
(A) DCA decreases nuclear localization of HIF1α (HIF1α, red; merged with DAPI, blue; right) and angiogenesis in GBM (vWF, green; merged with DAPI, blue; right). (B) DCA decreases tumor growth in a patient with GBM after 9 months of treatment. Figure modified with permission from (Michelakis et al., 2010).

Similar articles

Cited by

References

    1. Anastasiou D., Yu Y., Israelsen W. J., Jiang J. K., Boxer M. B., Hong B. S., et al. (2012). Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat. Chem. Biol. 8 839–847 - PMC - PubMed
    1. Bensaad K., Tsuruta A., Selak M. A., Vidal M. N., Nakano K., Bartrons R., et al. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126 107–120 - PubMed
    1. Bernardi P. (1996). The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim. Biophys. Acta 1275 5–9 - PubMed
    1. Bonnet S., Archer S. L., Allalunis-Turner J., Haromy A., Beaulieu C., Thompson R., et al. (2007a). A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11 37–51 - PubMed
    1. Bonnet S., Rochefort G., Sutendra G., Archer S. L., Haromy A., Webster L., et al. (2007b). The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically _targeted. Proc. Natl. Acad. Sci. U.S.A. 104 11418–11423 - PMC - PubMed
  NODES
twitter 2