Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun 24;8(6):e67422.
doi: 10.1371/journal.pone.0067422. Print 2013.

Physiological function of gastrin-releasing peptide and neuromedin B receptors in regulating itch scratching behavior in the spinal cord of mice

Affiliations

Physiological function of gastrin-releasing peptide and neuromedin B receptors in regulating itch scratching behavior in the spinal cord of mice

Devki D Sukhtankar et al. PLoS One. .

Abstract

Pruritus (itch) is a severe side effect associated with the use of drugs as well as hepatic and hematological disorders. Previous studies in rodents suggest that bombesin receptor subtypes i.e. receptors for gastrin-releasing peptide (GRPr) and neuromedin B (NMBr) differentially regulate itch scratching. However, to what degree spinal GRPr and NMBr regulate scratching evoked by intrathecally administered bombesin-related peptides is not known. The first aim of this study was to pharmacologically compare the dose-response curves for scratching induced by intrathecally administered bombesin-related peptides versus morphine, which is known to elicit itch in humans. The second aim was to determine if spinal GRPr and NMBr selectively or generally mediate scratching behavior. Mice received intrathecal injection of bombesin (0.01-0.3 nmol), GRP (0.01-0.3 nmol), NMB (0.1-1 nmol) or morphine (0.3-3 nmol) and were observed for one hour for scratching activity. Bombesin elicited most profound scratching over one hour followed by GRP and NMB, whereas morphine failed to evoke scratching response indicating the insensitivity of mouse models to intrathecal opioid-induced itch. Intrathecal pretreatment with GRPr antagonist RC-3095 (0.03-0.1 nmol) produced a parallel rightward shift in the dose response curve of GRP-induced scratching but not NMB-induced scratching. Similarly, PD168368 (1-3 nmol) only attenuated NMB but not GRP-induced scratching. Individual or co-administration of RC-3095 and PD168368 failed to alter bombesin-evoked scratching. A higher dose of RC-3095 (0.3 nmol) generally suppressed scratching induced by all three peptides but also compromised motor function in the rotarod test. Together, these data indicate that spinal GRPr and NMBr independently drive itch neurotransmission in mice and may not mediate bombesin-induced scratching. GRPr antagonists at functionally receptor-selective doses only block spinal GRP-elicited scratching but the suppression of scratching at higher doses is confounded by motor impairment.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Effects of intrathecal administration of bombesin-related peptides and morphine on scratching behavior.
Left panels show duration of scratching response and right panels show total number of scratching bouts for bombesin (A,B), GRP (C,D), NMB (E,F) and morphine (G,H). Mice were observed immediately after the intrathecal injections up to 1 h. Each value represents mean ± SEM (n = 6). Symbols represent different dosing conditions. An asterisk (*) represents significant difference from the vehicle controls (open bars; 0 µg) (P<0.05).
Figure 2
Figure 2. Comparison of dose response curves of intrathecal bombesin, GRP, NMB and morphine-induced scratching in mice.
Each value represents mean ± SEM (n = 6) for number of scratching bouts observed for 1 h.
Figure 3
Figure 3. Effects of GRPr antagonist RC-3095 and NMBr antagonist PD168368 on intrathecal GRP- and NMB-induced scratching, respectively.
Antagonists were administered intrathecally 10 min prior to GRP or NMB. Mice were observed immediately after the administration of GRP or NMB up to 1 h. Top panel shows changes in the dose response curve of GRP-induced scratching following RC-3095 pretreatment (A). Bottom panel shows changes in the dose response curve of NMB-induced scratching following PD168368 pretreatment (B). Each value represents mean ± SEM (n = 6) for number of scratching bouts observed across 1 h. Different symbols represent different dosing conditions.
Figure 4
Figure 4. Cross examination of the effects of GRPr antagonist RC-3095 and NMBr antagonist PD168368 on intrathecal GRP- and NMB-induced scratching.
Antagonists were administered intrathecally 10 min prior to GRP or NMB. Mice were observed immediately after the administration of GRP or NMB up to 1 h. Top panel shows changes in the dose response curve of GRP-induced scratching following pretreatment with active doses of PD168368 and RC-3095 (A). Bottom panel shows changes in the dose response curve of NMB-induced scratching following pretreatment with active doses of RC-3095 and PD168368 (B). Each value represents mean ± SEM (n = 6) for number of scratching bouts observed across 1 h. Different symbols represent different dosing conditions.
Figure 5
Figure 5. Effects of individual or co-administration of GRPr antagonist RC-3095 and NMBr antagonist PD168368 on the dose response curve of bombesin-induced scratching.
Antagonists were administered intrathecally 10 min prior to bombesin. Mice were observed immediately after the administration of bombesin up to 1 h. Each value represents Mean ± SEM (n = 6) for number of scratching bouts. Different symbols represent different dosing conditions.
Figure 6
Figure 6. Effects of high dose of intrathecal RC-3095 on scratching induced by bombesin-related peptides and motor function.
Top panel shows effects of RC-3095 on GRP, NMB and bombesin-induced scratching (n = 6) (A). Bottom panel shows effects of RC-3095 on the time spent by a mouse balancing on the rotarod (B). Mice (n = 10) were placed on the rotarod 10 min after the injection of RC-3095 and allowed to balance for 180 sec at different speeds. Different symbols represent different dosing conditions. Each value represents Mean ± SEM. An asterisk (*) represents significant difference from the vehicle controls (open bars or open circles; 0 µg) (P<0.05).

Similar articles

Cited by

References

    1. Weisshaar E, Dalgard F (2009) Epidemiology of itch: adding to the burden of skin morbidity. Acta Derm Venereol 89: 339–350. - PubMed
    1. Twycross R, Greaves MW, Handwerker H, Jones EA, Libretto SE, et al. (2003) Itch: scratching more than the surface. Qjm 96: 7–26. - PubMed
    1. Stander S, Weisshaar E, Mettang T, Szepietowski JC, Carstens E, et al. (2007) Clinical classification of itch: a position paper of the International Forum for the Study of Itch. Acta Derm Venereol 87: 291–294. - PubMed
    1. Patel T, Yosipovitch G (2010) Therapy of pruritus. Expert Opin Pharmacother 11: 1673–1682. - PMC - PubMed
    1. Andoh T, Kuwazono T, Lee JB, Kuraishi Y (2011) Gastrin-releasing peptide induces itch-related responses through mast cell degranulation in mice. Peptides 32: 2098–2103. - PubMed

Publication types

MeSH terms

  NODES
admin 21
INTERN 1
twitter 2