Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct;43(5):209-17.
doi: 10.4041/kjod.2013.43.5.209. Epub 2013 Oct 25.

Comparison of the condyle-fossa relationship between skeletal class III malocclusion patients with and without asymmetry: a retrospective three-dimensional cone-beam computed tomograpy study

Affiliations

Comparison of the condyle-fossa relationship between skeletal class III malocclusion patients with and without asymmetry: a retrospective three-dimensional cone-beam computed tomograpy study

Hyoun Oak Kim et al. Korean J Orthod. 2013 Oct.

Abstract

Objective: This study investigated whether temporomandibular joint (TMJ) condyle-fossa relationships are bilaterally symmetric in class III malocclusion patients with and without asymmetry and compared to those with normal occlusion. The hypothesis was a difference in condyle-fossa relationships exists in asymmetric patients.

Methods: Group 1 comprised 40 Korean normal occlusion subjects. Groups 2 and 3 comprised patients diagnosed with skeletal class III malocclusion, who were grouped according to the presence of mandibular asymmetry: Group 2 included symmetric mandibles, while group 3 included asymmetric mandibles. Pretreatment three-dimensional cone-beam computed tomography (3D CBCT) images were obtained. Right- and left-sided TMJ spaces in groups 1 and 2 or deviated and non-deviated sides in group 3 were evaluated, and the axial condylar angle was compared.

Results: The TMJ spaces demonstrated no significant bilateral differences in any group. Only group 3 had slightly narrower superior spaces (p < 0.001). The axial condylar angles between group 1 and 2 were not significant. However, group 3 showed a statistically significant bilateral difference (p < 0.001); toward the deviated side, the axial condylar angle was steeper.

Conclusions: Even in the asymmetric group, the TMJ spaces were similar between deviated and non-deviated sides, indicating a bilateral condyle-fossa relationship in patients with asymmetry that may be as symmetrical as that in patients with symmetry. However, the axial condylar angle had bilateral differences only in asymmetric groups. The mean TMJ space value and the bilateral difference may be used for evaluating condyle-fossa relationships with CBCT.

Keywords: Class III diagnosis; Condyle-fossa relationship; Facial asymmetry; TMJ; Three-dimensional cone-beam computed tomography.

PubMed Disclaimer

Conflict of interest statement

The authors report no commercial, proprietary, or financial interest in the products or companies described in this article.

Figures

Figure 1
Figure 1
The 3 views of the condyle in the cone-beam computed tomography (CBCT) image: A, axial view; B, coronal view; C, sagittal view. The CBCT images were reoriented with the horizontal reference plane connecting the bilateral orbitales and Frankfurt horizontal plane,, and the vertical midline and horizontal reference planes were set accordingly. The sagittal slice (C) was evaluated at the point where the mediolateral diameter of the right or left condyles was greatest (A) in the axial view.
Figure 2
Figure 2
Measurement of the joint space in the sagittal view. Anterior joint space (AS), superior joint space (SS), and posterior joint space (PS) were measured from the most prominent anterior, posterior, and superior condylar points to that of the glenoid fossa with the methods previously reported. The plane parallel to the Frankfurt horizontal (FH) plane was used as the reference plane.
Figure 3
Figure 3
Measurement of the axial condylar angle of the condylar process (A). It was defined as the angle between the long axis of the mandibular condylar process and a perpendicular line to the midsagittal plane.
Figure 4
Figure 4
Cone-beam computed tomography image of a sample case showing the largest axial condylar angle difference between the deviated and non-deviated sides.

Similar articles

Cited by

References

    1. Katsavrias EG, Halazonetis DJ. Condyle and fossa shape in Class II and Class III skeletal patterns: a morphometric tomographic study. Am J Orthod Dentofacial Orthop. 2005;128:337–346. - PubMed
    1. Ahn SJ, Lee SP, Nahm DS. Relationship between temporomandibular joint internal derangement and facial asymmetry in women. Am J Orthod Dentofacial Orthop. 2005;128:583–591. - PubMed
    1. Byun ES, Ahn SJ, Kim TW. Relationship between internal derangement of the temporomandibular joint and dentofacial morphology in women with anterior open bite. Am J Orthod Dentofacial Orthop. 2005;128:87–95. - PubMed
    1. Vitral RW, da Silva Campos MJ, Rodrigues AF, Fraga MR. Temporomandibular joint and normal occlusion: Is there anything singular about it? A computed tomographic evaluation. Am J Orthod Dentofacial Orthop. 2011;140:18–24. - PubMed
    1. Rodrigues AF, Fraga MR, Vitral RW. Computed tomography evaluation of the temporomandibular joint in Class I malocclusion patients: condylar symmetry and condyle-fossa relationship. Am J Orthod Dentofacial Orthop. 2009;136:192–198. - PubMed

LinkOut - more resources

  NODES
INTERN 2
twitter 2