Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 May;14(5):411-25.
doi: 10.2174/1389557514666140428113708.

Application of BRET for studying G protein-coupled receptors

Affiliations
Review

Application of BRET for studying G protein-coupled receptors

Agnieszka A Kaczor et al. Mini Rev Med Chem. 2014 May.

Abstract

G protein-coupled receptors (GPCRs) constitute one of the largest classes of cell surface receptors. GPCR biology has been a subject of widespread interest owing to the functional relevance of these receptors and their potential importance in the development of new drugs. At present, over 30% of all launched drugs _target these receptors. GPCRs have been considered for a long time to function as monomeric entities and the idea of GPCR dimerization and oligomerization was initially accepted with disbelief. However, a significant amount of experimental and molecular modeling evidence accumulated during the last several years suggests that the process of GPCRs dimer or oligomer formation is a general phenomenon, in some cases even essential for receptor function. Among the many methods to study GPCR dimerization and oligomerization, modern biophysical techniques such as those based on resonance energy transfer (RET) and particularly bioluminescence resonance energy transfer (BRET) have played a leading role. RET methods are commonly applied as non-destructive indicators of specific protein-protein interactions (PPIs) in living cells. Data from numerous BRET experiments support the idea that the process of GPCR oligomerization may be relevant in many physiological and pathological conditions. The application of BRET to the study of GPCRs is not only limited to the assessment of receptor oligomerization but also expands to the investigation of the interactions of GPCRs with other proteins, including G proteins, G protein-coupled receptor kinases, β-arrestins or receptor tyrosine kinases, as well as to the characterization of GPCR activation and signaling. In this review, we briefly summarize the fundaments of BRET, discuss new trends in this technology and describe the wide range of applications of BRET to study GPCRs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

  NODES
Idea 2
idea 2
twitter 2