Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 May 23:8:188.
doi: 10.3389/fnbeh.2014.00188. eCollection 2014.

Local control of striatal dopamine release

Affiliations
Review

Local control of striatal dopamine release

Roger Cachope et al. Front Behav Neurosci. .

Abstract

The mesolimbic and nigrostriatal dopamine (DA) systems play a key role in the physiology of reward seeking, motivation and motor control. Importantly, they are also involved in the pathophysiology of Parkinson's and Huntington's disease, schizophrenia and addiction. Control of DA release in the striatum is tightly linked to firing of DA neurons in the ventral tegmental area (VTA) and the substantia nigra (SN). However, local influences in the striatum affect release by exerting their action directly on axon terminals. For example, endogenous glutamatergic and cholinergic activity is sufficient to trigger striatal DA release independently of cell body firing. Recent developments involving genetic manipulation, pharmacological selectivity or selective stimulation have allowed for better characterization of these phenomena. Such termino-terminal forms of control of DA release transform considerably our understanding of the mesolimbic and nigrostriatal systems, and have strong implications as potential mechanisms to modify impaired control of DA release in the diseased brain. Here, we review these and related mechanisms and their implications in the physiology of ascending DA systems.

Keywords: acetylcholine; axonal release; dopamine; glutamate; optogenetics; striatum; volume transmission.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Termino-terminal control of dopamine (DA) release in the striatum. Model diagram of glutamatergic (left side of graph) and cholinergic (right side of graph) local influences on striatal DA release. Electrically-evoked glutamate release activates mGluRs located on dopaminergic varicosities increasing Ca++-sensitive K channels (KCa) conductance, which leads to reduction of DA release. Activation of iGluRs on MSNs elevates production of H2O2, which diffuses to DA varicosities enhancing ATP-sensitive K channels (KATP) conductance reducing DA release. Optogenetic selective activation of cholinergic interneurons (CINs) through channelrhodopsin (ChR2) triggers ACh release, increasing nAChR activation on DA varicosities, triggering DA release. Activation of mAChRs on cholinergic terminals decreases ACh release and further nAChR activation, which would result in decreased DA release.

Similar articles

Cited by

References

    1. Aosaki T., Kimura M., Graybiel A. M. (1995). Temporal and spatial characteristics of tonically active neurons of the primate’s striatum. J. Neurophysiol. 73, 1234–1252 - PubMed
    1. Aosaki T., Tsubokawa H., Ishida A., Watanabe K., Graybiel A., Kimura M. (1994). Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning. J. Neurosci. 14, 3969–3984 - PMC - PubMed
    1. Apicella P., Ravel S., Deffains M., Legallet E. (2011). The role of striatal tonically active neurons in reward prediction error signaling during instrumental task performance. J. Neurosci. 31, 1507–1515 10.1523/jneurosci.4880-10.2011 - DOI - PMC - PubMed
    1. Apicella P., Scarnati E., Schultz W. (1991). Tonically discharging neurons of monkey striatum respond to preparatory and rewarding stimuli. Exp. Brain Res. 84, 672–675 10.1007/bf00230981 - DOI - PubMed
    1. Avshalumov M. V., Chen B. T., Marshall S. P., Peña D. M., Rice M. E. (2003). Glutamate-dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2. J. Neurosci. 23, 2744–2750 10.1073/pnas.1834314100 - DOI - PMC - PubMed

LinkOut - more resources

  NODES
INTERN 1
twitter 2