Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 May;26(5):848-864.
doi: 10.1093/annonc/mdu525. Epub 2014 Nov 17.

Do prostate cancer risk models improve the predictive accuracy of PSA screening? A meta-analysis

Affiliations
Free article
Review

Do prostate cancer risk models improve the predictive accuracy of PSA screening? A meta-analysis

K S Louie et al. Ann Oncol. 2015 May.
Free article

Abstract

Background: Despite the extensive development of risk prediction models to aid patient decision-making on prostate screening, it is unknown whether these models could improve predictive accuracy of PSA testing to detect prostate cancer (PCa). The objective of this study was to perform a systematic review to identify PCa risk models and to assess the model's performance to predict PCa by conducting a meta-analysis.

Design: A systematic literature search of Medline was conducted to identify PCa predictive risk models that used at least two variables, of which one of the variables was prostate-specific antigen (PSA) level. Model performance (discrimination and calibration) was assessed. Prediction models validated in ≥5 study populations and reported area under the curve (AUC) for prediction of any or clinically significant PCa were eligible for meta-analysis. Summary AUC and 95% CIs were calculated using a random-effects model.

Results: The systematic review identified 127 unique PCa prediction models; however, only six models met study criteria for meta-analysis for predicting any PCa: Prostataclass, Finne, Karakiewcz, Prostate Cancer Prevention Trial (PCPT), Chun, and the European Randomized Study of Screening for Prostate Cancer Risk Calculator 3 (ERSPC RC3). Summary AUC estimates show that PCPT does not differ from PSA testing (0.66) despite performing better in studies validating both PSA and PCPT. Predictive accuracy to discriminate PCa increases with Finne (AUC = 0.74), Karakiewcz (AUC = 0.74), Chun (AUC = 0.76) and ERSPC RC3 and Prostataclass have the highest discriminative value (AUC = 0.79), which is equivalent to doubling the sensitivity of PSA testing (44% versus 21%) without loss of specificity. The discriminative accuracy of PCPT to detect clinically significant PCa was AUC = 0.71. Calibration measures of the models were poorly reported.

Conclusions: Risk prediction models improve the predictive accuracy of PSA testing to detect PCa. Future developments in the use of PCa risk models should evaluate its clinical effectiveness in practice.

Keywords: meta-analysis; prostate cancer; risk calculators; risk prediction models; screening.

PubMed Disclaimer

Comment in

Similar articles

Cited by

  NODES
Association 1
INTERN 1
twitter 2