Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies
- PMID: 26906401
- DOI: 10.1021/acs.jproteome.5b00981
Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies
Abstract
Missing values are a genuine issue in label-free quantitative proteomics. Recent works have surveyed the different statistical methods to conduct imputation and have compared them on real or simulated data sets and recommended a list of missing value imputation methods for proteomics application. Although insightful, these comparisons do not account for two important facts: (i) depending on the proteomics data set, the missingness mechanism may be of different natures and (ii) each imputation method is devoted to a specific type of missingness mechanism. As a result, we believe that the question at stake is not to find the most accurate imputation method in general but instead the most appropriate one. We describe a series of comparisons that support our views: For instance, we show that a supposedly "under-performing" method (i.e., giving baseline average results), if applied at the "appropriate" time in the data-processing pipeline (before or after peptide aggregation) on a data set with the "appropriate" nature of missing values, can outperform a blindly applied, supposedly "better-performing" method (i.e., the reference method from the state-of-the-art). This leads us to formulate few practical guidelines regarding the choice and the application of an imputation method in a proteomics context.
Keywords: label-free relative quantitative proteomics; missing value imputation.
Similar articles
-
Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based label-free global proteomics.J Proteome Res. 2015 May 1;14(5):1993-2001. doi: 10.1021/pr501138h. Epub 2015 Apr 22. J Proteome Res. 2015. PMID: 25855118 Free PMC article. Review.
-
Multiple Imputation Approaches Applied to the Missing Value Problem in Bottom-Up Proteomics.Int J Mol Sci. 2021 Sep 6;22(17):9650. doi: 10.3390/ijms22179650. Int J Mol Sci. 2021. PMID: 34502557 Free PMC article.
-
A comparative study of evaluating missing value imputation methods in label-free proteomics.Sci Rep. 2021 Jan 19;11(1):1760. doi: 10.1038/s41598-021-81279-4. Sci Rep. 2021. PMID: 33469060 Free PMC article.
-
A Simple Optimization Workflow to Enable Precise and Accurate Imputation of Missing Values in Proteomic Data Sets.J Proteome Res. 2021 Jun 4;20(6):3214-3229. doi: 10.1021/acs.jproteome.1c00070. Epub 2021 May 3. J Proteome Res. 2021. PMID: 33939434
-
Revisiting the Thorny Issue of Missing Values in Single-Cell Proteomics.J Proteome Res. 2023 Sep 1;22(9):2775-2784. doi: 10.1021/acs.jproteome.3c00227. Epub 2023 Aug 2. J Proteome Res. 2023. PMID: 37530557 Review.
Cited by
-
Embracing the informative missingness and silent gene in analyzing biologically diverse samples.Sci Rep. 2024 Nov 16;14(1):28265. doi: 10.1038/s41598-024-78076-0. Sci Rep. 2024. PMID: 39550430 Free PMC article.
-
PEPerMINT: peptide abundance imputation in mass spectrometry-based proteomics using graph neural networks.Bioinformatics. 2024 Sep 1;40(Suppl 2):ii70-ii78. doi: 10.1093/bioinformatics/btae389. Bioinformatics. 2024. PMID: 39230699 Free PMC article.
-
Fibre-specific mitochondrial protein abundance is linked to resting and post-training mitochondrial content in the muscle of men.Nat Commun. 2024 Sep 3;15(1):7677. doi: 10.1038/s41467-024-50632-2. Nat Commun. 2024. PMID: 39227581 Free PMC article.
-
Multi-omics analysis of aggregative multicellularity.iScience. 2024 Aug 3;27(9):110659. doi: 10.1016/j.isci.2024.110659. eCollection 2024 Sep 20. iScience. 2024. PMID: 39224513 Free PMC article.
-
Missing Values in Longitudinal Proteome Dynamics Studies: Making a Case for Data Multiple Imputation.J Proteome Res. 2024 Sep 6;23(9):4151-4162. doi: 10.1021/acs.jproteome.4c00263. Epub 2024 Aug 27. J Proteome Res. 2024. PMID: 39189460 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials