Transgenesis in Strongyloides and related parasitic nematodes: historical perspectives, current functional genomic applications and progress towards gene disruption and editing
- PMID: 27000743
- PMCID: PMC5364836
- DOI: 10.1017/S0031182016000391
Transgenesis in Strongyloides and related parasitic nematodes: historical perspectives, current functional genomic applications and progress towards gene disruption and editing
Abstract
Transgenesis for Strongyloides and Parastrongyloides was accomplished in 2006 and is based on techniques derived for Caenorhabditis elegans over two decades earlier. Adaptation of these techniques has been possible because Strongyloides and related parasite genera carry out at least one generation of free-living development, with adult males and females residing in soil contaminated by feces from an infected host. Transgenesis in this group of parasites is accomplished by microinjecting DNA constructs into the syncytia of the distal gonads of free-living females. In Strongyloides stercoralis, plasmid-encoded transgenes are expressed in promoter-regulated fashion in the F1 generation following gene transfer but are silenced subsequently. Stable inheritance and expression of transgenes in S. stercoralis requires their integration into the genome, and stable lines have been derived from integrants created using the piggyBac transposon system. More direct investigations of gene function involving expression of mutant transgene constructs designed to alter intracellular trafficking and developmental regulation have shed light on the function of the insulin-regulated transcription factor Ss-DAF-16. Transgenesis in Strongyloides and Parastrongyloides opens the possibility of powerful new methods for genome editing and transcriptional manipulation in this group of parasites. Proof of principle for one of these, CRISPR/Cas9, is presented in this review.
Keywords: Caenorhabditis; Strongyloides; CRISPR/Cas9; chromosomal integration; microinjection; nematode; transgenesis; transposon.
Figures
Similar articles
-
Transgenesis in the parasitic nematode Strongyloides ratti.Mol Biochem Parasitol. 2011 Oct;179(2):114-9. doi: 10.1016/j.molbiopara.2011.06.002. Epub 2011 Jun 23. Mol Biochem Parasitol. 2011. PMID: 21723330 Free PMC article.
-
Nucleic acid transfection and transgenesis in parasitic nematodes.Parasitology. 2012 Apr;139(5):574-88. doi: 10.1017/S0031182011001387. Epub 2011 Aug 31. Parasitology. 2012. PMID: 21880161 Free PMC article. Review.
-
Transposon-mediated chromosomal integration of transgenes in the parasitic nematode Strongyloides ratti and establishment of stable transgenic lines.PLoS Pathog. 2012;8(8):e1002871. doi: 10.1371/journal.ppat.1002871. Epub 2012 Aug 9. PLoS Pathog. 2012. PMID: 22912584 Free PMC article.
-
Heritable genetic transformation of Strongyloides stercoralis by microinjection of plasmid DNA constructs into the male germline.Int J Parasitol. 2017 Aug;47(9):511-515. doi: 10.1016/j.ijpara.2017.04.003. Epub 2017 Jun 1. Int J Parasitol. 2017. PMID: 28577882 Free PMC article.
-
The Strongyloides bioassay toolbox: A unique opportunity to accelerate functional biology for nematode parasites.Mol Biochem Parasitol. 2022 Nov;252:111526. doi: 10.1016/j.molbiopara.2022.111526. Epub 2022 Oct 12. Mol Biochem Parasitol. 2022. PMID: 36240960 Review.
Cited by
-
Development of a toolkit for piggyBac-mediated integrative transfection of the human filarial parasite Brugia malayi.PLoS Negl Trop Dis. 2018 May 21;12(5):e0006509. doi: 10.1371/journal.pntd.0006509. eCollection 2018 May. PLoS Negl Trop Dis. 2018. PMID: 29782496 Free PMC article.
-
Functional genomic exploration reveals that Ss-RIOK-1 is essential for the development and survival of Strongyloides stercoralis larvae.Int J Parasitol. 2017 Dec;47(14):933-940. doi: 10.1016/j.ijpara.2017.06.005. Epub 2017 Aug 3. Int J Parasitol. 2017. PMID: 28780152 Free PMC article.
-
The genomic basis of nematode parasitism.Brief Funct Genomics. 2018 Jan 1;17(1):8-14. doi: 10.1093/bfgp/elx010. Brief Funct Genomics. 2018. PMID: 28472353 Free PMC article. Review.
-
Transgenic expression of a T cell epitope in Strongyloides ratti reveals that helminth-specific CD4+ T cells constitute both Th2 and Treg populations.PLoS Pathog. 2021 Jul 8;17(7):e1009709. doi: 10.1371/journal.ppat.1009709. eCollection 2021 Jul. PLoS Pathog. 2021. PMID: 34237106 Free PMC article.
-
A comparative 'omics' approach for prediction of candidate Strongyloides stercoralis diagnostic coproantigens.PLoS Negl Trop Dis. 2023 Apr 17;17(4):e0010777. doi: 10.1371/journal.pntd.0010777. eCollection 2023 Apr. PLoS Negl Trop Dis. 2023. PMID: 37068106 Free PMC article.
References
-
- Ashton F. T., Bhopale V. M., Holt D., Smith G. and Schad G. A. (1998). Developmental switching in the parasitic nematode Strongyloides stercoralis is controlled by the ASF and ASI amphidial neurons. Journal of Parasitology 84, 691–695. - PubMed
-
- Beckmann S. and Grevelding C. G. (2012). Paving the way for transgenic schistosomes. Parasitology 139, 651–668. - PubMed
-
- Britton C., Samarasinghe B. and Knox D. P. (2012). Ups and downs of RNA interference in parasitic nematodes. Experimental Parasitology 132, 56–61. - PubMed
-
- Cahill C. M., Tzivion G., Nasrin N., Ogg S., Dore J., Ruvkun G. and Alexander-Bridges M. (2001). Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways. Journal of Biological Chemistry 276, 13402–13410. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous