Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar 31:7:424.
doi: 10.3389/fpls.2016.00424. eCollection 2016.

Comparative Proteomic Analysis Reveals Differential Root Proteins in Medicago sativa and Medicago truncatula in Response to Salt Stress

Affiliations

Comparative Proteomic Analysis Reveals Differential Root Proteins in Medicago sativa and Medicago truncatula in Response to Salt Stress

Ruicai Long et al. Front Plant Sci. .

Abstract

Salt stress is an important abiotic stress that causes decreased crop yields. Root growth and plant activities are affected by salt stress through the actions of specific genes that help roots adapt to adverse environmental conditions. For a more comprehensive understanding of proteins affected by salinity, we used two-dimensional gel electrophoresis and mass spectrometry to characterize the proteome-level changes associated with salt stress response in Medicago sativa cv. Zhongmu-1 and Medicago truncatula cv. Jemalong A17 roots. Our physiological and phenotypic observations indicated that Zhongmu-1 was more salt tolerant than Jemalong A17. We identified 93 and 30 proteins whose abundance was significantly affected by salt stress in Zhongmu-1 and Jemalong A17 roots, respectively. The tandem mass spectrometry analysis of the differentially accumulated proteins resulted in the identification of 60 and 26 proteins in Zhongmu-1 and Jemalong A17 roots, respectively. Function analyses indicated molecule binding and catalytic activity were the two primary functional categories. These proteins have known functions in various molecular processes, including defense against oxidative stress, metabolism, photosynthesis, protein synthesis and processing, and signal transduction. The transcript levels of four identified proteins were determined by quantitative reverse transcription polymerase chain reaction. Our results indicate that some of the identified proteins may play key roles in salt stress tolerance.

Keywords: 2-DE; Medicago; function; gene expression; protein; root; salt stress.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Physiological analysis and phenotypic observation of M. sativa cv. Zhongmu-1 and M. truncatula cv. Jemalong A17 under salt stress. One-month-old Zhongmu-1 and Jemalong A17 seedlings treated with 300 mM NaCl for 0, 2, 8, 24, and 48 h were analyzed for relative water content (A), electrolyte leakage (B), and proline content (C). (D,E) phenotypic observation of 1-month-old Jemalong A17 seedlings treated with 300 mM NaCl for 0 and 8 h. (F,G) phenotypic observation 1-month-old Zhongmu-1 seedlings treated with 300 mM NaCl for 0 and 8 h. * Indicates significant difference at p < 0.05 (Student's t-test).
Figure 2
Figure 2
Representative 2-DE gel images of M. sativa cv. Zhongmu-1 and M. truncatula cv. Jemalong A17 root proteins. There were 93 and 30 protein spots in Zhongmu-1 (A) and Jemalong A17 (B), respectively, showing at least a 1.5-fold change following 300 mM NaCl treatment (P < 0.05). M, protein marker.
Figure 3
Figure 3
Enlarged 2-DE gel regions of 16 differentially accumulated root proteins in M. sativa cv. Zhongmu-1 (Ms) and M. truncatula cv. Jemalong A17 (Mt). The abundance of S1, S4, S26, S35, T1, T3, T4, and T21 increased after 8 h salt stress. The abundance of S56, S59, S85, S90, T25, T26, T27, and T29 decreased after 8 h salt stress.
Figure 4
Figure 4
Functional categorization of identified proteins. The identified proteins in M. truncatula cv. Jemalong A17 (A) and M. sativa cv. Zhongmu-1 (B) were grouped into 12 and 16 functional categories, respectively.
Figure 5
Figure 5
Transcript expression levels of fructose-bisphosphate aldolase (A), heat shock protein (B), TCP-1/cpn60 chaperonin family protein (C), and cinnamyl alcohol dehydrogenase-like protein (D) in M. sativa cv. Zhongmu-1 and M. truncatula cv. Jemalong A17 roots treated with NaCl. * Indicates significant difference at p < 0.05 (Student's t-test).

Similar articles

Cited by

References

    1. Ali G. M., Komatsu S. (2006). Proteomic analysis of rice leaf sheath during drought stress. J. Proteome Res. 5, 396–403. 10.1021/pr050291g - DOI - PubMed
    1. Apel K., Hirt H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399. 10.1146/annurev.arplant.55.031903.141701 - DOI - PubMed
    1. Askari H., Edqvist J., Hajheidari M., Kafi M., Salekdeh G. H. (2006). Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6, 2542–2554. 10.1002/pmic.200500328 - DOI - PubMed
    1. Bates L., Waldren R., Teare I. (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207. 10.1007/BF00018060 - DOI
    1. Bhushan D., Pandey A., Choudhary M. K., Datta A., Chakraborty S., Chakraborty N. (2007). Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol. Cell. Proteomics 6, 1868–1884. 10.1074/mcp.M700015-MCP200 - DOI - PubMed

LinkOut - more resources

  NODES
twitter 2