Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May;20(Suppl 1):S49-56.
doi: 10.5213/inj.1632616.308. Epub 2016 May 26.

Neuroprotective Effects of Bone Marrow Stromal Cell Transplantation in Combination With Treadmill Exercise Following Traumatic Brain Injury

Affiliations

Neuroprotective Effects of Bone Marrow Stromal Cell Transplantation in Combination With Treadmill Exercise Following Traumatic Brain Injury

Mal Soon Shin et al. Int Neurourol J. 2016 May.

Abstract

Purpose: Traumatic brain injury (TBI) causes cognitive impairments, motor deficits, and neuropsychiatric/behavioral deficits problems. Transplantation of bone marrow stromal cells (BMSCs) facilitates functional recovery from brain insults. Treadmill exercise increases neurogenesis and inhibits apoptosis. In this study, we investigated the effects of BMSC transplantation in combination with treadmill exercise on memory function, by evaluating its effect on neurogenesis and apoptosis in the hippocampus following TBI.

Methods: TBI was induced using an electromagnetic-controlled cortical impact device. BMSCs were transplanted into both sides of traumatic scar region 1 week after TBI induction. One week after transplantation of BMSCs, the rats in the exercise groups were trained to run on a treadmill for 30 minutes once daily for 28 days. Step-down avoidance task and radial 8-arm maze test were conducted. Levels of 5-bromo-2ʹ-deoxyuridine and caspase-3 were evaluated using immunohistochemistry. Western blot was used to evaluate the expression of brain-derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB), total-extracellular signal-regulated kinase 1 and 2 (t-ERK1/2), phosphorylated-ERK1/2 (p-ERK1/2), Bcl-2, and Bax.

Results: TBI deteriorated memory function, suppressed neurogenesis, and accelerated apoptosis in the hippocampus. Treadmill exercise and BMSC transplantation independently improved memory function by increasing neurogenesis with suppression of apoptosis through the BDNF-ERK pathway in the TBI-induced rats. Combination of BMSC transplantation with treadmill exercise showed additional enhancement of neurogenesis and suppression of apoptosis in the hippocampus.

Conclusions: The present study shows that treadmill exercise may aid the therapeutic effect of BMSC transplantation on TBI in rats.

Keywords: Apoptosis; Brain Injuries; Exercise Test; Mesenchymal Stromal Cells; Neurogenesis.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Figures

Fig. 1.
Fig. 1.
Effects of transplantation of bone marrow stromal cells (BMSCs) and treadmill exercise on short-term memory. A, control group; B, treadmill exercise group; C, traumatic brain injury (TBI)-induced group; D, TBI-induced and treadmill exercise group; E, TBI-induced and BMSC transplantation group; F, TBI-induced and BMSC transplantation with treadmill exercise group. The letters a–c denote statistically significant differences, P<0.05.
Fig. 2.
Fig. 2.
Effects of transplantation of bone marrow stromal cells (BMSCs) and treadmill exercise on spatial learning ability. A, control group; B, treadmill exercise group; C, traumatic brain injury (TBI)-induced group; D, TBI-induced and treadmill exercise group; E, TBI-induced and BMSC transplantation group; F, TBI-induced and BMSC transplantation with treadmill exercise group. The letters a–c denote statistically significant differences, P<0.05.
Fig. 3.
Fig. 3.
Effects of transplantation of bone marrow stromal cells (BMSCs) and treadmill exercise on neurogenesis. Upper panel: Photomicrographs of 5-bromo-2ʹ-deoxyuridine (BrdU)-positive cells. The scale bar represents 200 μm. Lower panel: Number of BrdU-positive cells in each group. A, control group; B, treadmill exercise group; C, traumatic brain injury (TBI)-induced group; D, TBI-induced and treadmill exercise group; E, TBI-induced and BMSC transplantation group; F, TBI-induced and BMSC transplantation with treadmill exercise group. The letters a–c denote statistically significant differences, P<0.05.
Fig. 4.
Fig. 4.
Effects of transplantation of bone marrow stromal cells (BMSCs) and treadmill exercise on caspase-3 expression. Upper panel: Photomicrographs of caspase-3-positive cells. The scale bar represents 200 μm. Lower panel: Number of caspase-3-positive cells in each group. A, control group; B, treadmill exercise group; C, traumatic brain injury (TBI)-induced group; D, TBIinduced and treadmill exercise group; E, TBI-induced and BMSC transplantation group; F, TBI-induced and BMSC transplantation with treadmill exercise group. The letters a–d denote statistically significant differences, P<0.05.
Fig. 5.
Fig. 5.
Effects of transplantation of bone marrow stromal cells (BMSCs) and treadmill exercise on the expressions of brain-derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB), phospho-extracellular signal-related kinase 1 and 2 (p-ERK1/2), and total extracellular signal-related kinase 1 and 2 (t-ERK1/2). A, control group; B, treadmill exercise group; C, traumatic brain injury (TBI)-induced group; D, TBI-induced and treadmill exercise group; E, TBI-induced and BMSC transplantation group; F, TBI-induced and BMSC transplantation with treadmill exercise group. The letters a–d denote statistically significant differences, P<0.05.
Fig. 6.
Fig. 6.
Effects of transplantation of bone marrow stromal cells (BMSCs) and treadmill exercise on Bax and Bcl-2 expressions. (A) Control group, (B) treadmill exercise group, (C) TBI-induced group, (D) TBI-induced and treadmill exercise group, (E) TBI-induced and BMSC transplantation group, (F) TBI-induced and BMSC transplantation with treadmill exercise group. The letters a–d denote statistically significant differences, P<0.05.

Similar articles

Cited by

References

    1. Tashlykov V, Katz Y, Gazit V, Zohar O, Schreiber S, Pick CG. Apoptotic changes in the cortex and hippocampus following minimal brain trauma in mice. Brain Res. 2007;1130:197–205. - PubMed
    1. Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E. Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus. 2002;12:578–84. - PMC - PubMed
    1. Snyder JS, Kee N, Wojtowicz JM. Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol. 2001;85:2423–31. - PubMed
    1. Kim DH, Ko IG, Kim BK, Kim TW, Kim SE, Shin MS, et al. Treadmill exercise inhibits traumatic brain injury-induced hippocampal apoptosis. Physiol Behav. 2010;101:660–5. - PubMed
    1. Witgen BM, Lifshitz J, Smith ML, Schwarzbach E, Liang SL, Grady MS, et al. Regional hippocampal alteration associated with cognitive deficit following experimental brain injury: a systems, network and cellular evaluation. Neuroscience. 2005;133:1–15. - PubMed

LinkOut - more resources

  NODES
Note 6
twitter 2