Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jul 22;16(1):159.
doi: 10.1186/s12866-016-0779-3.

Comparison of various molecular methods for rapid differentiation of intestinal bifidobacteria at the species, subspecies and strain level

Affiliations

Comparison of various molecular methods for rapid differentiation of intestinal bifidobacteria at the species, subspecies and strain level

Piotr Jarocki et al. BMC Microbiol. .

Abstract

Background: Members of the genus Bifidobacterium are anaerobic Gram-positive Actinobacteria, which are natural inhabitants of human and animal gastrointestinal tract. Certain bifidobacteria are frequently used as food additives and probiotic pharmaceuticals, because of their various health-promoting properties. Due to the enormous demand on probiotic bacteria, manufacture of high-quality products containing living microorganisms requires rapid and accurate identification of specific bacteria. Additionally, isolation of new industrial bacteria from various environments may lead to multiple isolations of the same strain, therefore, it is important to apply rapid, low-cost and effective procedures differentiating bifidobacteria at the intra-species level. The identification of new isolates using microbiological and biochemical methods is difficult, but the accurate characterization of isolated strains may be achieved using a polyphasic approach that includes classical phenotypic methods and molecular procedures. However, some of these procedures are time-consuming and cumbersome, particularly when a large group of new isolates is typed, while some other approaches may have too low discriminatory power to distinguish closely related isolates obtained from similar sources.

Results: This work presents the evaluation of the discriminatory power of four molecular methods (ARDRA, RAPD-PCR, rep-PCR and SDS-PAGE fingerprinting) that are extensively used for fast differentiation of bifidobacteria up to the strain level. Our experiments included 17 reference strains and showed that in comparison to ARDRA, genotypic fingerprinting procedures (RAPD and rep-PCR) seemed to be less reproducible, however, they allowed to differentiate the tested microorganisms even at the intra-species level. In general, RAPD and rep-PCR have similar discriminatory power, though, in some instances more than one oligonucleotide needs to be used in random amplified polymorphic DNA analysis. Moreover, the results also demonstrated a high discriminatory power of SDS-PAGE fingerprinting of whole-cell proteins. On the other hand, the protein profiles obtained were rather complex, and therefore, difficult to analyze.

Conclusions: Among the tested procedures, rep-PCR proved to be the most effective and reliable method allowing rapid differentiation of Bifidobacterium strains. Additionally, the use of the BOXA1R primer in the differentiation of 21 Bifidobacterium strains, newly isolated from infant feces, demonstrated slightly better discriminatory power in comparison to PCR reactions with the (GTG)5 oligonucleotide. Thus, BOX-PCR turned out to be the most appropriate and convenient molecular technique in differentiating Bifidobacterium strains at all taxonomic levels.

Keywords: ARDRA; Bifidobacterium; Differentiation; RAPD; SDS-PAGE fingerprinting; rep-PCR.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
ARDRA patterns generated from restriction analysis of genus-specific amplicon (1350 bp) of 17 bifidobacterial strains using AluI restrictase. Analysis of the discriminatory power of the procedure applied was performed at a species level (a) - 1, DNA molecular marker; 2, B. adolescentis DSM 20087; 3, B. animalis NRRL B-41406; 4, B. bifidum DSM 204564; 5, B. breve DSM 20091; 6, B. catenulatum DSM 20224; 7, B. longum NRRL B-41409; 8, B. pseudocatenulatum DSM 20439; 9, B. pseudolongum DSM 20099; at a subspecies level (b) - 1, DNA molecular marker; 2, B. animalis subsp. animalis NRRL B-41406; 3, B. animalis subsp. lactis NRRL B-41405; 4, B. longum subsp. infantis ATCC 15697; 5, B. longum subsp. longum NRRL B-41409; 5, B. longum subsp. suis NRRL B-41407; 6, B. pseudolongum subsp. pseudolongum DSM 20099; 7, B. pseudolongum subsp. globosum DSM 20092; and at a strain level (c) - 1, DNA molecular marker; 2, B. adolescentis DSM 20087; 3, B. adolescentis DSM 20083; 4, B. adolescentis 20086; 5, B. breve DSM 20091; 6, B. breve NRRL B-41408; 7, B. pseudolongum DSM 20099; 8, B. pseudolongum 20094; 9, B. pseudolongum DSM 20095
Fig. 2
Fig. 2
Randomly amplified polymorphic DNA (RAPD)-PCR patterns obtained with PER1 primer for 17 bifidobacterial strains. Analysis of the discriminatory power of the procedure applied was performed at a species level (a) - 1, DNA molecular marker; 2, B. adolescentis DSM 20087; 3, B. animalis NRRL B-41406; 4, B. bifidum DSM 204564; 5, B. breve DSM 20091; 6, B. catenulatum DSM 20224; 7, B. longum NRRL B-41409; 8, B. pseudocatenulatum DSM 20439; 9, B. pseudolongum DSM 20099; at a subspecies level (b) - 1, DNA molecular marker; 2, B. animalis subsp. animalis NRRL B-41406; 3, B. animalis subsp. lactis NRRL B-41405; 4, B. longum subsp. infantis ATCC 15697; 5, B. longum subsp. longum NRRL B-41409; 5, B. longum subsp. suis NRRL B-41407; 6, B. pseudolongum subsp. pseudolongum DSM 20099; 7, B. pseudolongum subsp. globosum DSM 20092; and at a strain level (c) - 1, DNA molecular marker; 2, B. adolescentis DSM 20087; 3, B. adolescentis DSM 20083; 4, B. adolescentis 20086; 5, B. breve DSM 20091; 6, B. breve NRRL B-41408; 7, B. pseudolongum DSM 20099; 8, B. pseudolongum 20094; 9, B. pseudolongum DSM 20095
Fig. 3
Fig. 3
(GTG)5-PCR patterns of 17 strains belonging to the genus Bifidobacterium. Analysis of the discriminatory power of the procedure applied was performed at a species level (a) - 1, DNA molecular marker; 2, B. adolescentis DSM 20087; 3, B. animalis NRRL B-41406; 4, B. bifidum DSM 204564; 5, B. breve DSM 20091; 6, B. catenulatum DSM 20224; 7, B. longum NRRL B-41409; 8, B. pseudocatenulatum DSM 20439; 9, B. pseudolongum DSM 20099; at a subspecies level (b) - 1, DNA molecular marker; 2, B. animalis subsp. animalis NRRL B-41406; 3, B. animalis subsp. lactis NRRL B-41405; 4, B. longum subsp. infantis ATCC 15697; 5, B. longum subsp. longum NRRL B-41409; 5, B. longum subsp. suis NRRL B-41407; 6, B. pseudolongum subsp. pseudolongum DSM 20099; 7, B. pseudolongum subsp. globosum DSM 20092; and at a strain level (c) - 1, DNA molecular marker; 2, B. adolescentis DSM 20087; 3, B. adolescentis DSM 20083; 4, B. adolescentis 20086; 5, B. breve DSM 20091; 6, B. breve NRRL B-41408; 7, B. pseudolongum DSM 20099; 8, B. pseudolongum 20094; 9, B. pseudolongum DSM 20095
Fig. 4
Fig. 4
BOX-PCR DNA profiles obtained for Bifidobacterium strains used in this work. Analysis of the discriminatory power of this procedure was performed at a species level (a) - 1, DNA molecular marker; 2, B. adolescentis DSM 20087; 3, B. animalis NRRL B-41406; 4, B. bifidum DSM 204564; 5, B. breve DSM 20091; 6, B. catenulatum DSM 20224; 7, B. longum NRRL B-41409; 8, B. pseudocatenulatum DSM 20439; 9, B. pseudolongum DSM 20099; at a subspecies level (b) - 1, DNA molecular marker; 2, B. animalis subsp. animalis NRRL B-41406; 3, B. animalis subsp. lactis NRRL B-41405; 4, B. longum subsp. infantis ATCC 15697; 5, B. longum subsp. longum NRRL B-41409; 5, B. longum subsp. suis NRRL B-41407; 6, B. pseudolongum subsp. pseudolongum DSM 20099; 7, B. pseudolongum subsp. globosum DSM 20092; and at a strain level (c) - 1, DNA molecular marker; 2, B. adolescentis DSM 20087; 3, B. adolescentis DSM 20083; 4, B. adolescentis 20086; 5, B. breve DSM 20091; 6, B. breve NRRL B-41408; 7, B. pseudolongum DSM 20099; 8, B. pseudolongum 20094; 9, B. pseudolongum DSM 20095
Fig. 5
Fig. 5
SDS-PAGE profiles of whole cell proteins obtained for all tested bifidobacteria. Analysis of the discriminatory power of this technique was performed at a species level (a) - 1, protein molecular weight marker; 2, B. adolescentis DSM 20087; 3, B. animalis NRRL B-41406; 4, B. bifidum DSM 204564; 5, B. breve DSM 20091; 6, B. catenulatum DSM 20224; 7, B. longum NRRL B-41409; 8, B. pseudocatenulatum DSM 20439; 9, B. pseudolongum DSM 20099; at a subspecies level (b) – 1, protein molecular weight marker; 2, B. animalis subsp. animalis NRRL B-41406; 3, B. animalis subsp. lactis NRRL B-41405; 4, B. longum subsp. infantis ATCC 15697; 5, B. longum subsp. longum NRRL B-41409; 5, B. longum subsp. suis NRRL B-41407; 6, B. pseudolongum subsp. pseudolongum DSM 20099; 7, B. pseudolongum subsp. globosum DSM 20092; and at a strain level (c) - 1, protein molecular weight marker; 2, B. adolescentis DSM 20087; 3, B. adolescentis DSM 20083; 4, B. adolescentis 20086; 5, B. breve DSM 20091; 6, B. breve NRRL B-41408; 7, B. pseudolongum DSM 20099; 8, B. pseudolongum 20094; 9, B. pseudolongum DSM 20095
Fig. 6
Fig. 6
Differentiation of 21 bifidobacterial strains isolated from child feces using rep-PCR procedures. DNA profiles were determined in PCR reaction with (GTG)5 primer (a) and BOX1R oligonucleotide (b). Lane: 1, DNA molecular marker, 2, Bifdobacterium NK1.2; 3, NK2.2; 4, NK6.1; 5, NK7.2; 6, NK8.1; 7, NK9.1; 8, NK10.2; 9, NK11.1; 10, NK12; 11, NK13; 12, NK14; 13, NK15; 14, NK16; 15, NK17; 16, MP1; 17, MP5; 18, MP6; 19, WP3; 20, WP4; 21, WP7; 22, WP8

Similar articles

Cited by

References

    1. Cronin M, Ventura M, Fitzgerald GF, van Sinderen D. Progress in genomics, metabolism and biotechnology of bifidobacteria. Int J Food Microbiol. 2011;149(1):4–18. doi: 10.1016/j.ijfoodmicro.2011.01.019. - DOI - PubMed
    1. Fijan S. Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health. 2014;11(5):4745–67. doi: 10.3390/ijerph110504745. - DOI - PMC - PubMed
    1. He T, Priebe MG, Zhong Y, Huang C, Harmsen HJM, Raangs GC, et al. Effects of yogurt and bifidobacteria supplementation on the colonic microbiota in lactose-intolerant subjects. J Appl Microbiol. 2008;104(2):595–604. - PubMed
    1. Saavedra JM, Bauman NA, Oung I, Perman JA, Yolken RH. Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhea and shedding of rotavirus. Lancet. 1994;344(8929):1046–9. doi: 10.1016/S0140-6736(94)91708-6. - DOI - PubMed
    1. Chouraqui JP, Van Egroo LD, Fichot MC. Acidified milk formula supplemented with bifidobacterium lactis: Impact on infant diarrhea in residential care settings. J Pediatr Gastroenterol Nutr. 2004;38(3):288–92. doi: 10.1097/00005176-200403000-00011. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources

  NODES
twitter 2