Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 10;49(1):6.
doi: 10.1186/s12711-016-0275-0.

Long noncoding RNA repertoire in chicken liver and adipose tissue

Affiliations

Long noncoding RNA repertoire in chicken liver and adipose tissue

Kévin Muret et al. Genet Sel Evol. .

Abstract

Background: Improving functional annotation of the chicken genome is a key challenge in bridging the gap between genotype and phenotype. Among all transcribed regions, long noncoding RNAs (lncRNAs) are a major component of the transcriptome and its regulation, and whole-transcriptome sequencing (RNA-Seq) has greatly improved their identification and characterization. We performed an extensive profiling of the lncRNA transcriptome in the chicken liver and adipose tissue by RNA-Seq. We focused on these two tissues because of their importance in various economical traits for which energy storage and mobilization play key roles and also because of their high cell homogeneity. To predict lncRNAs, we used a recently developed tool called FEELnc, which also classifies them with respect to their distance and strand orientation to the closest protein-coding genes. Moreover, to confidently identify the genes/transcripts expressed in each tissue (a complex task for weakly expressed molecules such as lncRNAs), we probed a particularly large number of biological replicates (16 per tissue) compared to common multi-tissue studies with a larger set of tissues but less sampling.

Results: We predicted 2193 lncRNA genes, among which 1670 were robustly expressed across replicates in the liver and/or adipose tissue and which were classified into 1493 intergenic and 177 intragenic lncRNAs located between and within protein-coding genes, respectively. We observed similar structural features between chickens and mammals, with strong synteny conservation but without sequence conservation. As previously reported, we confirm that lncRNAs have a lower and more tissue-specific expression than mRNAs. Finally, we showed that adjacent lncRNA-mRNA genes in divergent orientation have a higher co-expression level when separated by less than 1 kb compared to more distant divergent pairs. Among these, we highlighted for the first time a novel lncRNA candidate involved in lipid metabolism, lnc_DHCR24, which is highly correlated with the DHCR24 gene that encodes a key enzyme of cholesterol biosynthesis.

Conclusions: We provide a comprehensive lncRNA repertoire in the chicken liver and adipose tissue, which shows interesting patterns of co-expression between mRNAs and lncRNAs. It contributes to improving the structural and functional annotation of the chicken genome and provides a basis for further studies on energy storage and mobilization traits in the chicken.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Predicted lncRNA features. a LncRNA prediction with a user-defined lncRNA specificity/sensitivity cut-off according to the two ROC curve graph provided by FEELnc. b Expression distribution within the three classes (new lncRNAs, ambiguous RNAs and new mRNAs) compared to that of known protein-coding genes from Ensembl. c Structural features for lncRNAs and Ensembl protein-coding RNAs in three species (G = Gallus gallus, M = Mus musculus, H = Homo sapiens). For the chicken lncRNAs, the data were generated in this study, while for the human and mouse lncRNAs, the data are taken from Ensembl V83. d Number of genes considered as expressed (FPKM-UQ ≥ 0.1) (y-axis) according to the number of biological replicates (x-axis) in the liver (left) and adipose tissue (right) for lncRNAs and Ensembl protein-coding genes. On each plot are indicated the number of genes for which at least 10 samples have a FPKM-UQ ≥ 0.1 (right number) and the number of genes for which a maximum of four samples have a FPKM-UQ ≥ 0.1 (left number). e Classification by FEELnc of the 1670 reliable lncRNA genes for 2412 transcripts
Fig. 2
Fig. 2
Gene density and structural features for protein-coding genes and lncRNA genes across the chicken macro- and micro-chromosomes. a Gene density for all chromosomes (except for chromosomes 16, 25, and W that are not sufficiently well sequenced). b Correlation of gene densities between protein-coding genes (y-axis) and long noncoding genes (x-axis). c Exon size, exon number and intron size for macro-chromosomes 1–5 and micro-chromosomes 20, 21, 23, 26, 27 and 28
Fig. 3
Fig. 3
Chicken/human lncRNA conservation in terms of sequence (a) and syntenic position (be). a An example of chicken lncRNA (XLOC_014262) that has a conserved sequence with the human RP11-386B13.3 lncRNA and a similar syntenic position in both species. b Schematic picture illustrating our approach for identifying syntenic lncRNAs between the chicken and human genomes. c, d Schematic representations of the SLC38A4-AMIGO2 (d) and VPS18-DLL4 loci. e Distributions of the expression of the two subsets of lncRNAs with conserved or not synteny
Fig. 4
Fig. 4
Tissue expression of lncRNA and protein-coding RNA genes in liver and adipose tissue in chicken. a Expression levels in both tissues. b Tissue-specific expression for the whole lncRNAs and Ensembl protein-coding RNAs. c Tissue-specific expression for a subset of the lncRNAs and protein-coding RNAs with similar expression (between the extreme medians of the lncRNA and mRNA expression distributions represented by x = 0.76 and y = 9.94 FPKM-UQ, respectively). The read counts were normalized for library size and gene size, and the biological replicates per tissue were taken into account as explained in “Methods” section
Fig. 5
Fig. 5
NPNT gene and its antisense lncRNA gene. a Gene models of the lncRNA/mRNA pair in the chicken and human genomes. b Expression of the lncRNA/mRNA pair analyzed with RNA-Seq data in liver (left) and adipose tissue (right). c Expression analysis with RT-qPCR data. d Expression of 20 fed and fasted birds (analyzed by RT-qPCR). Correlation significance: ***p value <0.001
Fig. 6
Fig. 6
DHCR24 gene and its divergent lncRNA gene. a Gene models of the lncRNA/mRNA pair in the chicken and human genomes. b Expression correlation in liver using RNA-Seq data (left) and confirmed by RT-qPCR (right). c Expression in adult birds analyzed by RNA-Seq (left) and young birds under fasted and fed statuses analyzed by RT-qPCR (right). d Expression across 17 tissues (see the “Methods” section). Correlation significance: ***p value <0.001

Similar articles

Cited by

References

    1. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309:1559–1563. doi: 10.1126/science.1112014. - DOI - PubMed
    1. Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 2014;515:355–364. doi: 10.1038/nature13992. - DOI - PMC - PubMed
    1. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489:101–108. doi: 10.1038/nature11233. - DOI - PMC - PubMed
    1. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316:1484–1488. doi: 10.1126/science.1138341. - DOI - PubMed
    1. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012;22:1760–1774. doi: 10.1101/gr.135350.111. - DOI - PMC - PubMed

MeSH terms

  NODES
Project 1
twitter 2