Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Oct:117:108-116.
doi: 10.1016/j.bandc.2017.06.010. Epub 2017 Jun 30.

Force related hemodynamic responses during execution and imagery of a hand grip task: A functional near infrared spectroscopy study

Affiliations

Force related hemodynamic responses during execution and imagery of a hand grip task: A functional near infrared spectroscopy study

Selina C Wriessnegger et al. Brain Cogn. 2017 Oct.

Abstract

We examined force related hemodynamic changes during the performance of a motor execution (ME) and motor imagery (MI) task by means of multichannel functional near infrared spectroscopy (fNIRS). The hemodynamic responses of fourteen healthy participants were measured while they performed a hand grip execution or imagery task with low and high grip forces. We found an overall higher increase of [oxy-Hb] concentration changes during ME for both grip forces but with a delayed peak maximum for the lower grip force. During the MI task with lower grip force, the [oxy-Hb] level increases are stronger compared to the MI with higher grip force. The facilitation in performing MI with higher grip strength might thus indicate less inhibition of the actual motor act which could also explain the later increase onset of [oxy-Hb] in the ME task with the lower grip force. Our results suggest that execution and imagery of a hand grip task with high and low grip forces, leads to different cortical activation patterns. Since impaired control of grip forces during object manipulation in particular is one aspect of fine motor control deficits after stroke, our study will contribute to future rehabilitation programs enhancing patient's grip force control.

Keywords: Functional near-infrared spectroscopy (fNIRS); Haemodynamic response; Motor execution; Motor imagery; Stroke.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources

  NODES
twitter 2