Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul:2017:2482-2485.
doi: 10.1109/EMBC.2017.8037360.

Correlation of reaction time and EEG log bandpower from dry frontal electrodes in a passive fatigue driving simulation experiment

Correlation of reaction time and EEG log bandpower from dry frontal electrodes in a passive fatigue driving simulation experiment

Ruyi Foong et al. Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul.

Abstract

Fatigue is one of the causes of falling asleep at the wheel, which can result in fatal accidents. Thus, it is necessary to have practical fatigue detection solutions for drivers. In literature, electroencephalography (EEG) along with the surrogate measure of reaction time (RT) has been used to develop fatigue detection algorithms. However, these solutions are often based upon wet multi-channel EEG electrodes which are not feasible or practical for drivers. Using dry electrodes and headband like designs would be better. Hence, this study aims to investigate the correlation of EEG log bandpower against RT via a Muse headband which has dry frontal EEG electrodes. 31 subjects underwent an hour-long driving simulation experiment with car deviation events. Based on the video and EEG data, 5 `Sleepy' and 5 `Alert' subjects are identified and analyzed. A differential signal between Fp1 and Fp2 is computed so as to remove the effects of eye blinks, and is analyzed for correlation with RT. Significant positive correlation is found for log delta (1-4 Hz) bandpower, and significant negative correlations for log theta (4-8 Hz) and alpha (8-12 Hz) bandpowers, but the positive correlation of log beta (12-30 Hz) bandpower with RT is not significant. This is a good first step towards building a practical fatigue detection solution for drivers in the future.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources

  NODES
twitter 2