Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May;41(5):1139-1153.
doi: 10.1111/pce.13100. Epub 2018 Jan 9.

Oxidative stress-triggered interactions between the succinyl- and acetyl-proteomes of rice leaves

Affiliations
Free article

Oxidative stress-triggered interactions between the succinyl- and acetyl-proteomes of rice leaves

Heng Zhou et al. Plant Cell Environ. 2018 May.
Free article

Abstract

Protein lysine acylations, such as succinylation and acetylation, are important post-translational modification (PTM) mechanisms, with key roles in cellular regulation. Antibody-based affinity enrichment, high-resolution liquid chromatography mass spectrometry analysis, and integrated bioinformatics analysis were used to characterize the lysine succinylome (Ksuc ) and acetylome (Kace ) of rice leaves. In total, 2,593 succinylated and 1,024 acetylated proteins were identified, of which 723 were simultaneously acetylated and succinylated. Proteins involved in photosynthetic carbon metabolism such as the large and small subunits of RuBisCO, ribosomal functions, and other key processes were subject to both PTMs. Preliminary insights into oxidant-induced changes to the rice acetylome and succinylome were gained from treatments with hydrogen peroxide. Exposure to oxidative stress did not regulate global changes in the rice acetylome or succinylome but rather led to modifications on a specific subset of the identified sites. De-succinylation of recombinant catalase (CATA) and glutathione S-transferase (OsGSTU6) altered the activities of these enzymes showing that this PTM may have a regulatory function. These findings not only greatly extend the list of acetylated and/or succinylated proteins but they also demonstrate the close cooperation between these PTMs in leaf proteins with key metabolic functions.

Keywords: catalase; glutathione S transferase; photosynthesis; post-translational modifications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

  NODES
twitter 2