Model-Fusion-Based Online Glucose Concentration Predictions in People with Type 1 Diabetes
- PMID: 29276347
- PMCID: PMC5736323
- DOI: 10.1016/j.conengprac.2017.10.013
Model-Fusion-Based Online Glucose Concentration Predictions in People with Type 1 Diabetes
Abstract
Accurate predictions of glucose concentrations are necessary to develop an artificial pancreas (AP) system for people with type 1 diabetes (T1D). In this work, a novel glucose forecasting paradigm based on a model fusion strategy is developed to accurately characterize the variability and transient dynamics of glycemic measurements. To this end, four different adaptive filters and a fusion mechanism are proposed for use in the online prediction of future glucose trajectories. The filter fusion mechanism is developed based on various prediction performance indexes to guide the overall output of the forecasting paradigm. The efficiency of the proposed model fusion based forecasting method is evaluated using simulated and clinical datasets, and the results demonstrate the capability and prediction accuracy of the data-based fusion filters, especially in the case of limited data availability. The model fusion framework may be used in the development of an AP system for glucose regulation in patients with T1D.
Keywords: adaptive filtering algorithms; model fusion strategy; online glucose prediction; type 1 diabetes.
Figures
Similar articles
-
Online Glucose Prediction Using Computationally Efficient Sparse Kernel Filtering Algorithms in Type-1 Diabetes.IEEE Trans Control Syst Technol. 2020 Jan;28(1):3-15. doi: 10.1109/tcst.2018.2843785. Epub 2018 Jun 22. IEEE Trans Control Syst Technol. 2020. PMID: 32699492 Free PMC article.
-
Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal.Sensors (Basel). 2019 Oct 8;19(19):4338. doi: 10.3390/s19194338. Sensors (Basel). 2019. PMID: 31597288 Free PMC article.
-
Incorporating Glucose Variability into Glucose Forecasting Accuracy Assessment Using the New Glucose Variability Impact Index and the Prediction Consistency Index: An LSTM Case Example.J Diabetes Sci Technol. 2022 Jan;16(1):7-18. doi: 10.1177/19322968211042621. Epub 2021 Sep 7. J Diabetes Sci Technol. 2022. PMID: 34490793 Free PMC article.
-
Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.Artif Intell Med. 2019 Jul;98:109-134. doi: 10.1016/j.artmed.2019.07.007. Epub 2019 Jul 26. Artif Intell Med. 2019. PMID: 31383477 Review.
-
Type 1 Diabetes Hypoglycemia Prediction Algorithms: Systematic Review.JMIR Diabetes. 2022 Jul 21;7(3):e34699. doi: 10.2196/34699. JMIR Diabetes. 2022. PMID: 35862181 Free PMC article. Review.
Cited by
-
Recent advances in the precision control strategy of artificial pancreas.Med Biol Eng Comput. 2024 Jun;62(6):1615-1638. doi: 10.1007/s11517-024-03042-x. Epub 2024 Feb 28. Med Biol Eng Comput. 2024. PMID: 38418768 Review.
-
Positive input observer-based controller design for blood glucose regulation for type 1 diabetic patients: A backstepping approach.IET Syst Biol. 2022 Sep;16(5):157-172. doi: 10.1049/syb2.12049. Epub 2022 Aug 17. IET Syst Biol. 2022. PMID: 35975823 Free PMC article.
-
GLYFE: review and benchmark of personalized glucose predictive models in type 1 diabetes.Med Biol Eng Comput. 2022 Jan;60(1):1-17. doi: 10.1007/s11517-021-02437-4. Epub 2021 Nov 9. Med Biol Eng Comput. 2022. PMID: 34751904 Review.
-
Prior Informed Regularization of Recursively Updated Latent-Variables-Based Models with Missing Observations.Control Eng Pract. 2021 Nov;116:104933. doi: 10.1016/j.conengprac.2021.104933. Epub 2021 Sep 11. Control Eng Pract. 2021. PMID: 34539101 Free PMC article.
-
Robust positive control of tumour growth using angiogenic inhibition.IET Syst Biol. 2023 Oct;17(5):288-301. doi: 10.1049/syb2.12076. Epub 2023 Oct 3. IET Syst Biol. 2023. PMID: 37787083 Free PMC article.
References
-
- Araghinejad S. Data-driven modeling: using MATLAB® in water resources and environmental engineering. Springer Science & Business Media 2013
-
- Aronszajn N. Theory of reproducing kernels. Transactions of the American mathematical society. 1950;68:337–404.
-
- Azmi M, Araghinejad S, Kholghi M. Multi model data fusion for hydrological forecasting using K-nearest neighbour method. Iranian Journal of Science and Technology. 2010;34:81.
-
- Bergman RN. Toward physiological understanding of glucose tolerance: minimal-model approach. Diabetes. 1989;38:1512–1527. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources