Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 27;11(1):36.
doi: 10.1186/s12920-018-0354-x.

HLA and proteasome expression body map

Affiliations

HLA and proteasome expression body map

Sebastian Boegel et al. BMC Med Genomics. .

Abstract

Background: The presentation of HLA peptide complexes to T cells is a highly regulated and tissue specific process involving multiple transcriptionally controlled cellular components. The extensive polymorphism of HLA genes and the complex composition of the proteasome make it difficult to map their expression profiles across tissues.

Methods: Here we applied a tailored gene quantification pipeline to 4323 publicly available RNA-Seq datasets representing 55 normal tissues and cell types to examine expression profiles of (classical and non-classical) HLA class I, class II and proteasomal genes.

Results: We generated the first comprehensive expression atlas of antigen presenting-related genes across 56 normal tissues and cell types, including immune cells, pancreatic islets, platelets and hematopoietic stem cells. We found a surprisingly heterogeneous HLA expression pattern with up to 100-fold difference in intra-tissue median HLA abundances. Cells of the immune system and lymphatic organs expressed the highest levels of classical HLA class I (HLA-A,-B,-C), class II (HLA-DQA1,-DQB1,-DPA1,-DPB1,-DRA,-DRB1) and non-classical HLA class I (HLA-E,-F) molecules, whereas retina, brain, muscle, megakaryocytes and erythroblasts showed the lowest abundance. In contrast, we identified a distinct and highly tissue-restricted expression pattern of the non-classical class I gene HLA-G in placenta, pancreatic islets, pituitary gland and testis. While the constitutive proteasome showed relatively constant expression across all tissues, we found the immunoproteasome to be enriched in lymphatic organs and almost absent in immune privileged tissues.

Conclusions: Here, we not only provide a reference catalog of tissue and cell type specific HLA expression, but also highlight extremely variable expression of the basic components of antigen processing and presentation in different cell types. Our findings indicate that low expression of classical HLA class I molecules together with lack of immunoproteasome components as well as upregulation of HLA-G may be of key relevance to maintain tolerance in immune privileged tissues.

Keywords: Atlas; Autoimmune; Bioinformatics; HLA expression; Human leukocyte antigens; Immunology; NGS; Proteasome; RNA-Seq.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

US is co-founder and employee of BioNTech AG (Mainz, Germany). JCC is now employed by Agenus UK Limited. These companies are developing immunotherapies. The remaining authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
HLA class I and class II expression body map. NGS RNA-Seq data from human non-cancer tissues is re-analyzed using seq2HLA v2.4 to determine classical HLA class I (blue) and HLA class II (red) expression levels. Depicted are the median expression levels. Expression is normalized according reads per kilobase of exon model per million mapped reads (RPKM). Tissue images are derived from https://en.wikipedia.org/wiki/File:Fibromyalgia_symptoms.svg under “public domain” license
Fig. 2
Fig. 2
HLA-G expression body map. The non-classical HLA Class I gene HLA-G has immune tolerogenic functions, which is in contrast to the classical HLA molecules. a It shows a distinct pattern, with clear expression in placenta and pituitary gland, and to a lesser extent in testis, rectum and lung. b Confirmation of HLA-G expression in placenta from three different locations, with chorion showing the highest abundance of HLA-G transcripts
Fig. 3
Fig. 3
HLA expression in immune cell populations, platelets and pancreatic islets. Neutrophils show the highest and platelets the lowest classical HLA class I expression. HLA class II is most abundant in myeloid dendritic cells (myeolid DCs) and B cells. HLA-E – and to a lesser extent – HLA-F are ubiquitously expressed with the lowest abundance in pancreatic islets and platelets. HLA-G transcripts are found in pancreatic islets only
Fig. 4
Fig. 4
HLA expression in stem and progenitor cells. Expression profiles in HLA class I, class II and non-classical HLA class I transcripts in in hematopoietic progenitor cell populations (HSC=Hematopoietic Stem Cell, MMP = Multipotent Progenitor, CMP=Common Myeloid Progenitor, MEP = Megakaryocyte Erythrocyte Progenitor, MK=CD34- CD41+ CD42+ megakaryocytes, EB = Erythroblasts, GMP = Granulocyte Monocyte Progenitor, CLP=Common Lymphoid Progenitor)
Fig. 5
Fig. 5
Expression of constitutive proteasome versus immunoproteasome. Median expression level of the genes PSMB5, PSMB6, PSMB7 from the constitutive proteasome (red) and median expression level of PSMB8 (LMP7), PSMB9 (LMP2), PSMB10 (LMP10) from the immunoproteasome (blue) are depicted to estimate expression of the respective proteasome type across different tissues. Sorted in ascending order of expression of the Immunoproteasome

Similar articles

Cited by

References

    1. Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520:692–696. doi: 10.1038/nature14426. - DOI - PMC - PubMed
    1. Kochan G, Escors D, Breckpot K, Guerrero-Setas D. Role of non-classical MHC class I molecules in cancer immunosuppression. Oncoimmunology. 2013;2:e26491. doi: 10.4161/onci.26491. - DOI - PMC - PubMed
    1. Leone P, Shin E-C, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst. 2013;105:1172–1187. doi: 10.1093/jnci/djt184. - DOI - PubMed
    1. Neefjes J, Jongsma MLM, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11:823–836. doi: 10.1038/nri3084. - DOI - PubMed
    1. Curigliano G, Criscitiello C, Gelao L, Goldhirsch A. Molecular pathways: human leukocyte antigen G (HLA-G) Clin Cancer Res. 2013;19:5564–5571. doi: 10.1158/1078-0432.CCR-12-3697. - DOI - PubMed

Publication types

Substances

  NODES
Association 1
Note 1
twitter 2