Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 4;18(1):252-264.
doi: 10.1021/acs.jproteome.8b00578. Epub 2018 Nov 26.

Complementary iTRAQ Proteomic and Transcriptomic Analyses of Leaves in Tea Plant ( Camellia sinensis L.) with Different Maturity and Regulatory Network of Flavonoid Biosynthesis

Affiliations

Complementary iTRAQ Proteomic and Transcriptomic Analyses of Leaves in Tea Plant ( Camellia sinensis L.) with Different Maturity and Regulatory Network of Flavonoid Biosynthesis

Liang-Yu Wu et al. J Proteome Res. .

Abstract

The quality of tea is highly related with the maturity of the fresh tea leaves at harvest. The present study investigated the proteomic and transcriptomic profiles of tea leaves with different maturity, using iTRAQ and RNA-seq technologies. A total of 4455 proteins and 27 930 unigenes were identified, with functional enrichment analyses of GO categorization and KEGG annotation. The compositions of flavonoids (catechins and flavonols) in tea leaves were determined. The total content of flavonoids decreased with leaf maturity, in accordance with the protein regulation patterns of shikimate, phenylpropanoid, and flavonoid pathways. The abundance of ANR had a positive correlation with epi-catechin content, while LAR abundance was positively related with catechin content ( P < 0.05). The biosynthetic network of flavonoid biosynthesis was discussed in combination with photosynthesis, primary metabolism, and transcription factors. Bud had the lowest activities of photosynthesis and carbon fixation but the highest flavonoid biosynthesis ability in opposite to mature leaf. SUS-INV switch might be an important joint for carbon flow shifting into the follow-up biochemical syntheses. This work provided a comprehensive overview on the functional protein profile changes of tea leaves at different growing stages and also proposed a research direction regarding the correlations between primary metabolism and flavonoid biosynthesis.

Keywords: Camellia sinensis; flavonoid biosynthesis; leaf maturity; primary metabolism; proteome; transcription factor; transcriptome.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

  NODES
twitter 2