A Computational Design Framework for Efficient, Fabrication Error-Tolerant, Planar THz Diffractive Optical Elements
- PMID: 30967563
- PMCID: PMC6456492
- DOI: 10.1038/s41598-019-42243-5
A Computational Design Framework for Efficient, Fabrication Error-Tolerant, Planar THz Diffractive Optical Elements
Abstract
We demonstrate ultra-thin (1.5-3λ0), fabrication-error tolerant efficient diffractive terahertz (THz) optical elements designed using a computer-aided optimization-based search algorithm. The basic operation of these components is modeled using scalar diffraction of electromagnetic waves through a pixelated multi-level 3D-printed polymer structure. Through the proposed design framework, we demonstrate the design of various ultrathin planar THz optical elements, namely (i) a high Numerical Aperture (N.A.), broadband aberration rectified spherical lens (0.1 THz-0.3 THz), (ii) a spectral splitter (0.3 THz-0.6 THz) and (iii) an on-axis broadband transmissive hologram (0.3 THz-0.5 THz). Such an all-dielectric computational design-based approach is advantageous against metallic or dielectric metasurfaces from the perspective that it incorporates all the inherent structural advantages associated with a scalar diffraction based approach, such as (i) ease of modeling, (ii) substrate-less facile manufacturing, (iii) planar geometry, (iv) high efficiency along with (v) broadband operation, (vi) area scalability and (vii) fabrication error-tolerance. With scalability and error tolerance being two major bottlenecks of previous design strategies. This work is therefore, a significant step towards the design of THz optical elements by bridging the gap between structural and computational design i.e. through a hybrid design-based approach enabling considerably less computational resources than the previous state of the art. Furthermore, the approach used herein can be expanded to a myriad of optical elements at any wavelength regime.
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
The Magic of Optics-An Overview of Recent Advanced Terahertz Diffractive Optical Elements.Sensors (Basel). 2020 Dec 26;21(1):100. doi: 10.3390/s21010100. Sensors (Basel). 2020. PMID: 33375221 Free PMC article. Review.
-
Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing.Sci Rep. 2016 Feb 12;6:21545. doi: 10.1038/srep21545. Sci Rep. 2016. PMID: 26868264 Free PMC article.
-
Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens.Opt Express. 2018 Nov 12;26(23):29817-29825. doi: 10.1364/OE.26.029817. Opt Express. 2018. PMID: 30469940
-
All-optical diffractive neural networked terahertz hologram.Opt Lett. 2020 May 15;45(10):2906-2909. doi: 10.1364/OL.394046. Opt Lett. 2020. PMID: 32412498
-
Broadband and wide-angle RCS reduction using a 2-bit coding ultrathin metasurface at terahertz frequencies.Sci Rep. 2016 Dec 16;6:39252. doi: 10.1038/srep39252. Sci Rep. 2016. PMID: 27982089 Free PMC article.
Cited by
-
Broadband lightweight flat lenses for long-wave infrared imaging.Proc Natl Acad Sci U S A. 2019 Oct 22;116(43):21375-21378. doi: 10.1073/pnas.1908447116. Epub 2019 Oct 7. Proc Natl Acad Sci U S A. 2019. PMID: 31591227 Free PMC article.
-
Impact of fabrication errors and refractive index on multilevel diffractive lens performance.Sci Rep. 2020 Sep 3;10(1):14608. doi: 10.1038/s41598-020-71480-2. Sci Rep. 2020. PMID: 32883991 Free PMC article.
-
The Magic of Optics-An Overview of Recent Advanced Terahertz Diffractive Optical Elements.Sensors (Basel). 2020 Dec 26;21(1):100. doi: 10.3390/s21010100. Sensors (Basel). 2020. PMID: 33375221 Free PMC article. Review.
-
Design of task-specific optical systems using broadband diffractive neural networks.Light Sci Appl. 2019 Dec 2;8:112. doi: 10.1038/s41377-019-0223-1. eCollection 2019. Light Sci Appl. 2019. PMID: 31814969 Free PMC article.
References
-
- Goodman, J. W. Introduction to Fourier Optics (2005).
-
- Lalanne P, Chavel. P. Metalenses at visible wavelengths: past, present, perspectives. Las. & Phot. Rev. 2017;11:1600295. doi: 10.1002/lpor.201600295. - DOI
-
- Lewis, R. A. Terahertz Physics (2012).
-
- Tonouchi M. Cutting-edge terahertz technology. Nat. Phot. 2007;1:97.
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous