Creation and application of virtual patient cohorts of heart models
- PMID: 32448064
- PMCID: PMC7287335
- DOI: 10.1098/rsta.2019.0558
Creation and application of virtual patient cohorts of heart models
Abstract
Patient-specific cardiac models are now being used to guide therapies. The increased use of patient-specific cardiac simulations in clinical care will give rise to the development of virtual cohorts of cardiac models. These cohorts will allow cardiac simulations to capture and quantify inter-patient variability. However, the development of virtual cohorts of cardiac models will require the transformation of cardiac modelling from small numbers of bespoke models to robust and rapid workflows that can create large numbers of models. In this review, we describe the state of the art in virtual cohorts of cardiac models, the process of creating virtual cohorts of cardiac models, and how to generate the individual cohort member models, followed by a discussion of the potential and future applications of virtual cohorts of cardiac models. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Keywords: cardiac; digital twin; simulation; virtual patient cohorts.
Conflict of interest statement
We declare we have no competing interest.
Figures
Similar articles
-
Credibility assessment of patient-specific computational modeling using patient-specific cardiac modeling as an exemplar.PLoS Comput Biol. 2022 Oct 10;18(10):e1010541. doi: 10.1371/journal.pcbi.1010541. eCollection 2022 Oct. PLoS Comput Biol. 2022. PMID: 36215228 Free PMC article.
-
Virtual medicine: Utilization of the advanced cardiac imaging patient avatar for procedural planning and facilitation.J Cardiovasc Comput Tomogr. 2018 Jan-Feb;12(1):16-27. doi: 10.1016/j.jcct.2017.11.004. Epub 2017 Nov 16. J Cardiovasc Comput Tomogr. 2018. PMID: 29198733 Review.
-
The Use of Computational Modeling and Simulation to Create Virtual Patients: Application to Cardiac Pacing and Defibrillation Systems.J Cardiovasc Transl Res. 2018 Apr;11(2):89-91. doi: 10.1007/s12265-017-9780-y. Epub 2018 Jan 5. J Cardiovasc Transl Res. 2018. PMID: 29305798 No abstract available.
-
An audit of uncertainty in multi-scale cardiac electrophysiology models.Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190335. doi: 10.1098/rsta.2019.0335. Epub 2020 May 25. Philos Trans A Math Phys Eng Sci. 2020. PMID: 32448070 Free PMC article. Review.
-
Parameter subset reduction for patient-specific modelling of arrhythmogenic cardiomyopathy-related mutation carriers in the CircAdapt model.Philos Trans A Math Phys Eng Sci. 2020 Jun 12;378(2173):20190347. doi: 10.1098/rsta.2019.0347. Epub 2020 May 25. Philos Trans A Math Phys Eng Sci. 2020. PMID: 32448061 Free PMC article.
Cited by
-
Virtual Cohorts and Synthetic Data in Dementia: An Illustration of Their Potential to Advance Research.Front Artif Intell. 2021 May 17;4:613956. doi: 10.3389/frai.2021.613956. eCollection 2021. Front Artif Intell. 2021. PMID: 34079930 Free PMC article.
-
Robust and efficient fixed-point algorithm for the inverse elastostatic problem to identify myocardial passive material parameters and the unloaded reference configuration.J Comput Phys. 2022 Aug;463:111266. doi: 10.1016/j.jcp.2022.111266. J Comput Phys. 2022. PMID: 35662800 Free PMC article.
-
A Review of Personalised Cardiac Computational Modelling Using Electroanatomical Mapping Data.Arrhythm Electrophysiol Rev. 2024 May 20;13:e08. doi: 10.15420/aer.2023.25. eCollection 2024. Arrhythm Electrophysiol Rev. 2024. PMID: 38807744 Free PMC article. Review.
-
Enabling forward uncertainty quantification and sensitivity analysis in cardiac electrophysiology by reduced order modeling and machine learning.Int J Numer Method Biomed Eng. 2021 Jun;37(6):e3450. doi: 10.1002/cnm.3450. Epub 2021 May 7. Int J Numer Method Biomed Eng. 2021. PMID: 33599106 Free PMC article.
-
From evidence-based medicine to digital twin technology for predicting ventricular tachycardia in ischaemic cardiomyopathy.J R Soc Interface. 2022 Sep;19(194):20220317. doi: 10.1098/rsif.2022.0317. Epub 2022 Sep 21. J R Soc Interface. 2022. PMID: 36128708 Free PMC article.
References
-
- Augustin CM, Neic A, Liebmann M, Prassl AJ, Niederer SA, Haase G, Plank G. 2016. Anatomically accurate high resolution modeling of human whole heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation. J. Comput. Phys. 305, 622–646. (10.1016/j.jcp.2015.10.045) - DOI - PMC - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources