Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov;47(12):1128-1137.
doi: 10.1071/FP20131.

Response of photosynthate distribution in potato plants to different LED spectra

Affiliations

Response of photosynthate distribution in potato plants to different LED spectra

Wei He et al. Funct Plant Biol. 2020 Nov.

Abstract

Although light is essential to photosynthesis, few studies have examined the effects of different LED spectra on photosynthate distribution in potato plants. Therefore, we exposed tuberising potato plants to white (W), red (R), blue (B) and green (G) LED treatments and compared tuber development and carbohydrate partitioning among the plants. R-treated plants had greater photosynthetic leaf area during tuber development compared with those under other treatments, thus enhancing assimilation. Although R-treated plants had higher 13C assimilation in the leaves, stems and roots than those under B treatment, there was no difference in partitioning of 13C assimilation and yield in the tubers of each plant between R and B treatments. For the tuber size, R-treated plants had a higher ratio of large tubers (>20 g) and a lower ratio of small (2-20 g) and medium-sized (10-20 g) tubers than those under W. B-treated plants had more medium-sized and large tubers than those under W. The reason may be that plants under R treatment distributed more assimilated 13C in their first tuber than those under other treatments. By contrast, plants under B balanced photosynthate distribution among their tubers. Leaves under G treatment had lower photosynthetic efficiency and ΦPSII than those under W, R or B treatment, which resulted in lower 13C photosynthate allocation in organs and lower tuber yield per plant than in R and B treatments. Overall, R treatment promoted 13C assimilation and led to more large tubers than other treatments. B-treated plants distributed more photosynthates into tubers rather than other organs and showed balanced tuber development.

PubMed Disclaimer

Similar articles

Cited by

Publication types

  NODES
twitter 2