Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Aug:108:101936.
doi: 10.1016/j.artmed.2020.101936. Epub 2020 Jul 24.

Coarse-to-fine classification for diabetic retinopathy grading using convolutional neural network

Affiliations
Free article

Coarse-to-fine classification for diabetic retinopathy grading using convolutional neural network

Zhan Wu et al. Artif Intell Med. 2020 Aug.
Free article

Abstract

Diabetic retinopathy (DR) is the most common eye complication of diabetes and one of the leading causes of blindness and vision impairment. Automated and accurate DR grading is of great significance for the timely and effective treatment of fundus diseases. Current clinical methods remain subject to potential time-consumption and high-risk. In this paper, a hierarchically Coarse-to-fine network (CF-DRNet) is proposed as an automatic clinical tool to classify five stages of DR severity grades using convolutional neural networks (CNNs). The CF-DRNet conforms to the hierarchical characteristic of DR grading and effectively improves the classification performance of five-class DR grading, which consists of the following: (1) The Coarse Network performs two-class classification including No DR and DR, where the attention gate module highlights the salient lesion features and suppresses irrelevant background information. (2) The Fine Network is proposed to classify four stages of DR severity grades of the grade DR from the Coarse Network including mild, moderate, severe non-proliferative DR (NPDR) and proliferative DR (PDR). Experimental results show that proposed CF-DRNet outperforms some state-of-art methods in the publicly available IDRiD and Kaggle fundus image datasets. These results indicate our method enables an efficient and reliable DR grading diagnosis in clinic.

Keywords: Coarse-to-fine classification; Convolutional neural networks; Diabetic retinopathy grading; Fundus images.

PubMed Disclaimer

Similar articles

Cited by

Publication types

  NODES
twitter 2