Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021:359:287-323.
doi: 10.1016/bs.ircmb.2021.02.006. Epub 2021 Mar 8.

Physiology of pancreatic β-cells: Ion channels and molecular mechanisms implicated in stimulus-secretion coupling

Affiliations
Review

Physiology of pancreatic β-cells: Ion channels and molecular mechanisms implicated in stimulus-secretion coupling

Minerva Gil-Rivera et al. Int Rev Cell Mol Biol. 2021.

Abstract

The human and mouse islet of Langerhans is an endocrine organ composed of five different cells types; insulin-secreting β-cells, glucagon-producing α-cells, somatostatin-producing δ-cells, pancreatic polypeptide-secreting PP cells and ɛ-cells that secretes ghrelin. The most important cells are the pancreatic β-cells that comprise around 45-50% of human islets and 75-80% in the mouse. Pancreatic β-cells secrete insulin at high glucose concentration, thereby finely regulating glycaemia by the hypoglycaemic effects of this hormone. Different ion channels are implicated in the stimulus-secretion coupling of insulin. An increase in the intracellular ATP concentration leads to closure KATP channels, depolarizing the cell and opening voltage-gated calcium channels. The increase of intracellular calcium concentration induced by calcium entry through voltage-gated calcium channels promotes insulin secretion. Here, we briefly describe the diversity of ion channels present in pancreatic β-cells and the different mechanisms that are responsible to induce insulin secretion in human and mouse cells. Moreover, we described the pathophysiology due to alterations in the physiology of the main ion channels present in pancreatic β-cell and its implication to predispose metabolic disorders as type 2 diabetes mellitus.

Keywords: Diabetes; Electrophysiology; Glucose induced insulin secretion; Ion channels; Pancreatic β-cell.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources

  NODES
twitter 2