Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul;5(7):759-771.
doi: 10.1038/s41551-021-00723-y. Epub 2021 May 27.

Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue

Affiliations

Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue

Enming Song et al. Nat Biomed Eng. 2021 Jul.

Abstract

Evaluating the biomechanics of soft tissues at depths well below their surface, and at high precision and in real time, would open up diagnostic opportunities. Here, we report the development and application of miniaturized electromagnetic devices, each integrating a vibratory actuator and a soft strain-sensing sheet, for dynamically measuring the Young's modulus of skin and of other soft tissues at depths of approximately 1-8 mm, depending on the particular design of the sensor. We experimentally and computationally established the operational principles of the devices and evaluated their performance with a range of synthetic and biological materials and with human skin in healthy volunteers. Arrays of devices can be used to spatially map elastic moduli and to profile the modulus depth-wise. As an example of practical medical utility, we show that the devices can be used to accurately locate lesions associated with psoriasis. Compact electronic devices for the rapid and precise mechanical characterization of living tissues could be used to monitor and diagnose a range of health disorders.

PubMed Disclaimer

Comment in

Similar articles

Cited by

References

    1. Joodaki, H. & Panzer, M. B. Skin mechanical properties and modeling: a review. Proc. Inst. Mech. Eng. H 232, 323–343 (2018). - PubMed - DOI
    1. Pawlaczyk, M., Lelonkiewicz, M. & Wieczorowski, M. Age-dependent biomechanical properties of the skin. Postepy Dermatol. Alergol. 5, 302–306 (2013). - DOI
    1. Pandya, H. J., Chen, W., Goodell, L. A., Foran, D. J. & Desai, J. P. Mechanical phenotyping of breast cancer using MEMS: a method to demarcate benign and cancerous breast tissues. Lab Chip 14, 4523–4532 (2014). - PubMed - PMC - DOI
    1. Leblanc, N. et al. Durometer measurements of skin induration in venous disease. Dermatol. Surg. 23, 285–287 (1997). - PubMed
    1. Khanna, D. et al. Standardization of the modified Rodnan skin score for use in clinical trials of systemic sclerosis. J. Scleroderma Relat. Disord. 2, 11–18 (2017). - PubMed - DOI

Publication types

LinkOut - more resources

  NODES
twitter 2