Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jan 13;27(1):20.
doi: 10.31083/j.fbl2701020.

Calpain activation and progression of inflammatory cycles in Parkinson's disease

Affiliations
Review

Calpain activation and progression of inflammatory cycles in Parkinson's disease

Andrew Gao et al. Front Biosci (Landmark Ed). .

Abstract

Parkinson's disease (PD) is a progressive, neurodegenerative condition of the central nervous system (CNS) affecting 6.3 million people worldwide with no curative treatments. Current therapies aim to mitigate PD's effects and offer symptomatic relief for patients. Multiple pathways are involved in the pathogenesis of PD, leading to neuroinflammation and the destruction of dopaminergic neurons in the CNS. This review focuses on PD pathology and the role of calpain, a neutral protease, as a regulator of various immune cells such as T-cells, microglia and astrocytes which lead to persistent neuroinflammatory responses and neuronal loss in both the brain and spinal cord (SC). Calpain plays a significant role in the cleavage and aggregation of toxic α-synuclein (α-syn), a presynaptic neural protein, and other organelles, contributing to mitochondrial dysfunction and oxidative stress. α-Syn aggregation results in the formation of Lewy bodies (LB) that further contribute to neuronal damage through lipid bilayer penetration, calcium ion (Ca2+) influx, oxidative stress and damage to the blood brain barrier (BBB). Dysfunctional mitochondria destabilize cytosolic Ca2+ concentrations, raising intracellular Ca2+; this leads to excessive calpain activation and persistent inflammatory responses. α-Syn aggregation also results in the disruption of dopamine synthesis through phosphorylation of tyrosine hydroxylase (TH), a key enzyme involved in the conversion of tyrosine to levodopa (L-DOPA), the amino acid precursor to dopamine. Decreased dopamine levels result in altered dopamine receptor (DR) signaling, ultimately activating pro-inflammatory T-cells to further contribute to the inflammatory response. All of these processes, together, result in neuroinflammation, degeneration and ultimately neuronal death seen in PD. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP-a prodrug to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+)), rotenone (an environmental neurotoxin), and 6-hydroxydopamine (6-OHDA - a neurotoxic synthetic organic compound) induce PD-like conditions when injected into rodents. All three agents work through similar mechanisms and lead to degeneration of dopaminergic neurons in the substantia nigra (SN) and more recently discovered in motor neurons of the spinal cord (SC). These neurotoxins also increase calpain activity, furthering the neuroinflammatory response. Hence, calpain inhibitors have been posited as potential therapeutics for PD to prevent calpain-related inflammation and neurodegenerative responses in not only the SN but the SC as well.

Keywords: Calpain; Dopamine; Neurodegeneration; Neuroinflammation; Parkinson's disease (PD); Spinal cord; α-Synuclein (α-Syn).

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. AH is serving as one of the Editorial Board members of this journal. We declare that AH had no involvement in the peer review of this article and has no access to information regarding its peer review. Full responsibility for the editorial process for this article was delegated to GP.

Figures

Fig. 1.
Fig. 1.. α-Syn dysregulation by microglia resulting in neuroinflammation and neuronal death.
Impaired microglial function prevents normal autophagy and lysosome clearance, leading to aggregation of α-syn monomers into oligomers, proto-fibrils, fibrils, and eventually LB’s. LB, in conjunction with aggregated α-syn, results in lipid bilayer penetration, Ca2+ ion influx, oxidative stress and damage to the BBB. α-Syn aggregation into LB’s results in the activation of TLR2 and TLR4, which further activate inflammasomes leading to inflammatory signaling and neurodegeneration. α-Syn aggregation also results in the disruption of dopamine synthesis through the phosphorylation of TH, a critical enzyme in the synthesis of L-DOPA, the amino acid precursor to dopamine. Reduced TH and dopamine levels results in dysfunctional DR signaling leading to further neuroinflammation and neurodegeneration. α-Syn aggregation into oligomers and proto-fibrils also allows α-syn to interact with CD36 and FYN, resulting in further inflammasome activation, α-syn uptake, and neurodegeneration. (Figure created with BioRender.com).
Fig. 2.
Fig. 2.. Calpain activation resulting in mitochondrial damage, neuroinflammation, and neurodegeneration.
Calpain, a neutral pro-tease, is activated in the presence of elevated intracellular Ca2+ levels. Calpain activation leads to the cleavage of various mitochondrial components, resulting in dysfunctional mitochondrial activity. When the ETC is disrupted by calpain, ATP production is reduced. The resulting increase in Ca2+ levels causes further calpain activation, ROS production, and neuronal death as a result of microglial activation. Calpain activation results in decreased local microglial populations, disrupting the normal functions of autophagy and lysosome clearance by microglia. Dysfunctional microglia allow for the accumulation and aggregation of α-syn, resulting in pro-inflammatory responses. Calpain inhibition, however, allows normal microglial autophagy and lysosome clearance, preventing the accumulation of α-syn. (Figure created with BioRender.com).
Fig. 3.
Fig. 3.. Dysfunctional dopamine signaling resulting in neuroinflammation and dopaminergic neuron loss.
In healthy individuals, dopamine signaling is controlled through low affinity DRs (DRD1 and DRD2). DRD1 and DRD2 serve a neuroprotective role and lead to anti-inflammatory responses. In PD individuals, however, decreased dopamine levels prompt activation of high affinity DRs (DRD3 and DRD5) on Treg cells, leading to pro-inflammatory responses. DRD3 and DRD5 on Treg cells interact with dopamine and signal T cell differentiation into Th1 and Th17 cell phenotypes. Treg cell interaction with ICAM and LFA-1 also causes stimulation of the Th17 and Th1 cell phenotypes. These Th cells release pro-inflammatory cytokines and chemokines (IFN-γ, TNF-α, IL-17, IL-22, etc.), resulting in a pro-inflammatory cascade, neuroinflammation, and dopaminergic neuron loss. Treatment with Pramipexole has been shown to inhibit these high affinity DRs with consequent anti-inflammatory effects. (Figure created with BioRender.com).

Similar articles

Cited by

References

    1. Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. Journal of Clinical Investigation. 2009. ; 119: 182–192. - PMC - PubMed
    1. Samantaray S, Knaryan VH, Shields DC, Banik NL. Critical role of calpain in spinal cord degeneration in Parkinson’s disease. Journal of Neurochemistry. 2013. ; 127: 880–890. - PMC - PubMed
    1. Vivacqua G, Biagioni F, Yu S, Casini A, Bucci D, D’Este L, et al. Loss of spinal motor neurons and alteration of alpha-synuclein immunostaining in MPTP induced Parkinsonism in mice. Journal of Chemical Neuroanatomy. 2012. ; 44: 76–85. - PubMed
    1. Del Tredici K, Braak H. Spinal cord lesions in sporadic Parkinson’s disease. Acta Neuropathologica. 2012. ; 124: 643–664. - PubMed
    1. Salat D, Tolosa E. Levodopa in the treatment of Parkinson’s disease: current status and new developments. Journal of Parkinson’s Disease. 2013. ; 3: 255–269. - PubMed

Publication types

  NODES
admin 2
twitter 2