Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Aug 22:9:971647.
doi: 10.3389/fvets.2022.971647. eCollection 2022.

Effects of dietary supplement with a Chinese herbal mixture on growth performance, antioxidant capacity, and gut microbiota in weaned pigs

Affiliations

Effects of dietary supplement with a Chinese herbal mixture on growth performance, antioxidant capacity, and gut microbiota in weaned pigs

Qinglei Xu et al. Front Vet Sci. .

Abstract

Weaning stress decreases the growth performance of piglets and is one of the main concerns of pig industries. Traditional Chinese herbal medicines have been used to reduce the adverse effects of weaning stress as both nutritional supplements and antibiotic substitutes. This study aimed to evaluate the effects of a Chinese herbal mixture (Kangtaile, which contained Paeonia lactiflora, licorice, dandelion, and tea polyphenols) on the growth performances, immune response, antioxidant capacity, and intestinal microbiota of weaned pigs. A total of 400 weaned pigs [Duroc × (Landrace × Yorkshire)] were randomly allocated into one of four treatments: the CON group, fed with basic diet; the HM1 group, fed with basal diet supplemented with 0.5 g herbal mixture/kg diet; the HM2 group, fed with basal diet supplemented with 1.0 g herbal mixture/kg diet; or the HM3 group, fed with basal diet supplemented with 1.5 g herbal mixture/kg diet. The results revealed that dietary supplementation with the herbal mixture for 28 days improved average daily gain and feed conversion ratio, while decreased the diarrhea rate of weaned pigs. Moreover, dietary supple-mentation with the herbal mixture improved the antioxidant capacity through increasing the activity of catalase (CAT) and the total antioxidant capacity (T-AOC) level, while decreasing the concentration of malondialdehyde (MDA) in the serum. Pigs supplemented with herbal mixture presented an increased serum immunoglobulin (Ig)M level on day 14 compared with control pigs. The herbal mixture altered the composition of intestinal microbiota by influencing the relative abundances of Firmicutes and Bacteroidetes at the phylum level. The relative abundances of the Firmicutes and Bacteroidetes were significantly related to the body weight gain of pigs. In conclusion, supplementation of herbal mixture to the diet improved growth performance, immunity, and antioxidant capacity and modified the composition of intestinal microbiota in weaning pigs. This study provided new insights into the nutritional regulation effects of the herbal mixtures on weaned pigs.

Keywords: antioxidant capacity; growth performance; gut microbiota; herbal mixture; weaned pigs.

PubMed Disclaimer

Conflict of interest statement

Author RJ was employed by Wuxi Sanzhi Bio-Tech Co., Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Effects of herbal mixture on the intestinal microbiota diversity in weaned pigs on day 14 and day 28 based on alpha diversity parameters of chao1 index (A), observed OTUs (B), shannon index (C) and simpson index (D). The X-axis is the experimental period, and the Y-axis is the diversity indexes. CON, basic diet; HM1, basic diet with 0.5 g/kg of herbal mixture; HM2, basic diet with 1.0 g/kg of herbal mixture; HM3, basic diet with 1.5 g/kg of herbal mixture. Different lowercase letters in the figure indicate statistically significant differences (p < 0.05).
Figure 2
Figure 2
Intestinal microbiota compositions of different groups at phylum (A) and genus (B) levels on days 14 and 28. CON, basic diet; HM1, basic diet with 0.5 g/kg of herbal mixture; HM2, basic diet with 1.0 g/kg of herbal mixture; HM3, basic diet with 1.5 g/kg of herbal mixture.
Figure 3
Figure 3
Comparison of dominant intestinal microbiota at phylum level. Relative abundances of Firmicutes (A), Bacteroidetes (B), Actinobacteria (C), and Proteobacteria (D) among the four groups on d 18 and d 35. CON, basic diet; HM1, basic diet with 0.5 g/kg of herbal mixture; HM2, basic diet with 1.0 g/kg of herbal mixture; HM3, basic diet with 1.5 g/kg of herbal mixture. Different lowercase letters in the figure indicate statistically significant differences (p < 0.05).
Figure 4
Figure 4
Comparison of dominant intestinal microbiota at genus level. Relative abundances of Lactobacillus (A), Clostridium (B), Blautia (C), Clostridia_UCG-014 (D), Prevotella (E), and Bifidobacterium (F) among the four groups on d 18 and d 35. CON, basic diet; HM1, basic diet with 0.5 g/kg of herbal mixture; HM2, basic diet with 1.0 g/kg of herbal mixture; HM3, basic diet with 1.5 g/kg of herbal mixture. Different lowercase letters in the figure indicate statistically significant differences (p < 0.05).
Figure 5
Figure 5
Linear discriminant analysis coupled with effect size (LEFse). The LEfSe analysis identified the differentially abundant (LDA score > 4) bacterial taxa between the HM group and the CON group on day 14 (A) or on day 28 (C). A linear discriminant analysis (LDA) score higher than 4 indicates that the relative abundance of the corresponding group is higher than that of the other groups. The abscissa of the bar chart represents the LDA value, and the ordinate is the different species of the selected treatments. Cladogram showing the most discriminative bacterial clades identified by LEfSe between the HM group and CON group on day 14 (B) or on day 28 (D). LEfSe taxonomic clade: Different colors indicate that some taxa are enriched in different groups. The size of a circle is based on relative abundance. CON, basic diet; HM1, basic diet with 0.5 g/kg of herbal mixture; HM2, basic diet with 1.0 g/kg of herbal mixture; HM3, basic diet with 1.5 g/kg of herbal mixture.
Figure 6
Figure 6
Heatmap of the partial correlation analysis between the dominant microbial species and growth performance (A), serum antioxidant parameters (B). ADG, the average daily gain; ADFI, average daily feed intake; F: G, feed to gain ratio; T-AOC, total antioxidant capacity; MDA, malondialdehyde; GSH-PX, glutathione peroxidase; SOD, superoxide dismutase; CAT, catalase; GSH, glutathione; IgM, immunoglobulin M. The red represents positive correlation and the blue represents negative correlation, respectively (*p < 0.05).

Similar articles

Cited by

References

    1. Campbell JM, Crenshaw JD, Polo J. The biological stress of early weaned piglets. J Anim Sci Biotechnol. (2013) 4:19. 10.1186/2049-1891-4-19 - DOI - PMC - PubMed
    1. Barton MD. Antibiotic use in animal feed and its impact on human healt. Nutr Res Rev. (2000) 13:279–99. 10.1079/095442200108729106 - DOI - PubMed
    1. Khan MZH. Recent biosensors for detection of antibiotics in animal derived food. Crit Rev Anal Chem. (2022) 52:780–90. 10.1080/10408347.2020.1828027 - DOI - PubMed
    1. Guo S, Liu L, Lei J, Qu X, He C, Tang S, et al. . Modulation of intestinal morphology and microbiota by dietary Macleaya cordata extract supplementation in Xuefeng Black-boned Chicken. Animal. (2021) 15:100399. 10.1016/j.animal.2021.100399 - DOI - PubMed
    1. Gong J, Yin F, Hou Y, Yin Y. Review: Chinese herbs as alternatives to antibiotics in feed for swine and poultry production: potential and challenges in application. Can J Anim Sci. (2014) 94:223–41. 10.4141/cjas2013-144 - DOI
  NODES
twitter 2