Evolutive Models, Algorithms and Predictive Parameters for the Progression of Hepatic Steatosis
- PMID: 38668326
- PMCID: PMC11052048
- DOI: 10.3390/metabo14040198
Evolutive Models, Algorithms and Predictive Parameters for the Progression of Hepatic Steatosis
Abstract
The utilization of evolutive models and algorithms for predicting the evolution of hepatic steatosis holds immense potential benefits. These computational approaches enable the analysis of complex datasets, capturing temporal dynamics and providing personalized prognostic insights. By optimizing intervention planning and identifying critical transition points, they promise to revolutionize our approach to understanding and managing hepatic steatosis progression, ultimately leading to enhanced patient care and outcomes in clinical settings. This paradigm shift towards a more dynamic, personalized, and comprehensive approach to hepatic steatosis progression signifies a significant advancement in healthcare. The application of evolutive models and algorithms allows for a nuanced characterization of disease trajectories, facilitating tailored interventions and optimizing clinical decision-making. Furthermore, these computational tools offer a framework for integrating diverse data sources, creating a more holistic understanding of hepatic steatosis progression. In summary, the potential benefits encompass the ability to analyze complex datasets, capture temporal dynamics, provide personalized prognostic insights, optimize intervention planning, identify critical transition points, and integrate diverse data sources. The application of evolutive models and algorithms has the potential to revolutionize our understanding and management of hepatic steatosis, ultimately leading to improved patient outcomes in clinical settings.
Keywords: algorithms; computational approaches; evolutive models; hepatic steatosis; predictive parameters; progression prediction.
Conflict of interest statement
The authors declare no conflicts of interest.
Similar articles
-
Smart Smile: Revolutionizing Dentistry With Artificial Intelligence.Cureus. 2023 Jun 30;15(6):e41227. doi: 10.7759/cureus.41227. eCollection 2023 Jun. Cureus. 2023. PMID: 37529520 Free PMC article. Review.
-
Exploring the predictive factors of heart disease using rare association rule mining.Sci Rep. 2024 Aug 6;14(1):18178. doi: 10.1038/s41598-024-69071-6. Sci Rep. 2024. PMID: 39107391 Free PMC article.
-
The future of Cochrane Neonatal.Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12. Early Hum Dev. 2020. PMID: 33036834
-
Right care, first time: a highly personalised and measurement-based care model to manage youth mental health.Med J Aust. 2019 Nov;211 Suppl 9:S3-S46. doi: 10.5694/mja2.50383. Med J Aust. 2019. PMID: 31679171
-
Artificial Intelligence for Multiple Sclerosis Management Using Retinal Images: Pearl, Peaks, and Pitfalls.Semin Ophthalmol. 2024 May;39(4):271-288. doi: 10.1080/08820538.2023.2293030. Epub 2023 Dec 13. Semin Ophthalmol. 2024. PMID: 38088176 Review.
References
-
- Pouwels S., Sakran N., Graham Y., Leal A., Pintar T., Yang W., Kassir R., Singhal R., Mahawar K., Ramnarain D. Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss. BMC Endocr. Disord. 2022;22:63. doi: 10.1186/s12902-022-00980-1. - DOI - PMC - PubMed
-
- Antunes C., Azadfard M., Hoilat G.J., Gupta M. StatPearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2024. Fatty Liver. - PubMed
-
- Berardo C., Di Pasqua L.G., Cagna M., Richelmi P., Vairetti M., Ferrigno A. Nonalcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis: Current Issues and Future Perspectives in Preclinical and Clinical Research. Int. J. Mol. Sci. 2020;21:9646. doi: 10.3390/ijms21249646. - DOI - PMC - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources