Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1982 May;47(5):869-84.
doi: 10.1152/jn.1982.47.5.869.

Linear and nonlinear W-cells in C-laminae of the cat's lateral geniculate nucleus

Linear and nonlinear W-cells in C-laminae of the cat's lateral geniculate nucleus

M Sur et al. J Neurophysiol. 1982 May.

Abstract

1. We used standard, single-cell recording techniques to study the response properties of 34 W-cells in the C-laminae of the cat's lateral geniculate nucleus. By W-cell, we mean a poorly responsive geniculate neuron that receives slowly conducting retinal afferents; these are quite distinct from geniculate X- and Y-cells. Our measurements included response latency to optic chiasm stimulation, plots of the receptive-field center, time course of response, and responses to counterphased, sine-wave gratings. This last measurement also involved the determination of contrast sensitivity, which is defined as the inverse of the contrast needed to evoke a threshold response at a particular spatial and temporal frequency of the grating. Many of these responses were compared to those of geniculate X- and Y-cells recorded in the A-laminae. 2. Each of the W-cells responded with a latency of at least 2.0 ms to optic chiasm stimulation, and most (76%) exhibited a latency of at least 2.5 ms. However, only 26 of these W-cells responded to visual stimuli, and these responses were weak or "sluggish," as has been reported previously. Receptive fields of these W-cells tended to be large, compared to those of X- and Y-cells, and included 11 on-center, 13 off-center, and 2 on-off center fields. 3. W-cells exhibited either linear (12 cells) or nonlinear (14 cells) spatial and temporal summation, as determined from their responses to counterphased, sine-wave gratings. Linearity of spatial summation was determined by measuring contrast sensitivity as a function of the grating's spatial phase. The linear W-cells' responses were sinusoidally phase dependent, and the nonlinear W-cells' responses were independent of spatial phase. Linearity of temporal summation was determined by the presence or absence of harmonic distortion in the response relative to the grating's counterphase rate. Linear W-cells responded chiefly at the grating's fundamental temporal frequency, whereas much of the nonlinear W-cells' responses occurred at the second harmonic of the grating's temporal frequency. Thus, nonlinear W-cells exhibited many of the characteristics previously described for Y-cells. 4. Spatial and temporal contrast-sensitivity functions were determined for seven linear and eight nonlinear W-cells. Overall sensitivity values of the linear and nonlinear W-cells were comparable, but these groups differed in terms of the nature of the response component (linear or nonlinear) that was more sensitive. 5. The linear W-cells in our sample included both tonic (comparable to the "sluggish-transient" type of retinal ganglion cells) types, while all nonlinear W-cells were phasic. Otherwise, no difference between linear and nonlinear W-cells was seen for latency to optic chiasm stimulation, receptive-field size, overall contrast sensitivity, responsiveness to visual stimuli, overall spatial resolution, or temporal resolution. 6...

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

  NODES
twitter 2