Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Dec:472:415-42.
doi: 10.1113/jphysiol.1993.sp019954.

The role of Na(+)-Ca2+ exchange in paired pulse potentiation of ferret ventricular muscle

Affiliations

The role of Na(+)-Ca2+ exchange in paired pulse potentiation of ferret ventricular muscle

M S Kirby et al. J Physiol. 1993 Dec.

Abstract

1. Stimulation of cardiac muscle with pairs of stimuli ('paired pulse stimulation') results in a large inotropic effect and experiments have been carried out on ferret ventricular muscle to investigate the underlying mechanism. 2. Aequorin was used to measure sarcoplasmic Ca2+ in papillary muscles. During paired pulse stimulation the first aequorin light transient (i.e. Ca2+ transient) and contraction of the pair increased in amplitude, whereas the second aequorin light transient and contraction were small. When the interval between the pair was decreased, the second aequorin light transient and contraction of the pair were smaller, but the increase in the first aequorin light transient and contraction was greater. 3. The relationship between contraction and the aequorin light transient was the same during paired pulse stimulation and on raising the bathing Ca2+ concentration. It is concluded that there was no change in the myofilament sensitivity to Ca2+ during paired pulse stimulation. 4. The increase in the aequorin light transient and contraction during paired pulse stimulation was prevented by ryanodine, an inhibitor of the sarcoplasmic reticulum (SR). 5. During paired pulse stimulation of ventricular myocytes there was little change in the first action potential of the pair, but the second action potential was shorter than control when the interval between the pair was short. During paired pulse stimulation of ventricular myocytes under voltage clamp control there was little change in the first Ca2+ current (iCa) of the pair, but the second iCa was smaller than control when the interval between the pair was short. Because paired pulse potentiation was greatest when the interval between the pair was short, it is concluded that paired pulse potentiation was not the result of a prolongation of the action potential or increase in iCa. 6. During paired pulse stimulation of ventricular myocytes under voltage clamp control the increase in contraction was greater, the more positive the membrane potential during the second pulse of the pair. This voltage dependence is consistent with a role for the Na(+)-Ca2+ exchanger in paired pulse potentiation. 7. During paired pulse stimulation of ventricular myocytes under voltage clamp control, changes in putative Na(+)-Ca2+ exchange current were observed consistent with a decrease of Ca2+ efflux (or increase of Ca2+ influx) via the exchanger during the second pulse of the pair. 8. A computer model of excitation-contraction coupling (Harrison, McCall & Boyett, 1992) has been used to simulate paired pulse stimulation and the results described above.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

References

    1. Pflugers Arch. 1969;306(1):33-57 - PubMed
    1. Pharmacol Rev. 1963 Sep;15:601-52 - PubMed
    1. J Gen Physiol. 1975 Mar;65(3):367-84 - PubMed
    1. Pflugers Arch. 1975;354(1):55-74 - PubMed
    1. Prog Biophys Mol Biol. 1980;36(1):1-52 - PubMed

Publication types

LinkOut - more resources

  NODES
twitter 2