Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Oct 1;88(7):2559-68.

Type 2M:Milwaukee-1 von Willebrand disease: an in-frame deletion in the Cys509-Cys695 loop of the von Willebrand factor A1 domain causes deficient binding of von Willebrand factor to platelets

Affiliations
  • PMID: 8839848
Free article

Type 2M:Milwaukee-1 von Willebrand disease: an in-frame deletion in the Cys509-Cys695 loop of the von Willebrand factor A1 domain causes deficient binding of von Willebrand factor to platelets

D J Mancuso et al. Blood. .
Free article

Abstract

This report examines the genetic basis of a variant form of moderately severe von Willebrand disease (vWD) characterized by low plasma von Willebrand factor antigen (vWF:Ag) levels and normal multimerization, typical of type 1 vWD, but disproportionately-low agonist-mediated platelet-binding activity. We identified an in-frame deletion in vWF exon 28 in three generations of affected family members, who are heterozygous for this mutation. The deletion of nucleotides 4,173-4,205 results in the loss of amino acids Arg629-Gln639 in the Cys509-Cys695 loop of the A1 domain in mature vWF. The secreted mutant vWF showed a normal multimeric profile but did not bind to platelets in the presence of optimal concentrations of either ristocetin or botrocetin. The mutant vWF also failed to interact with heparin, and with vWF monoclonal antibody AvW3, which blocks the binding of vWF to GPlb. In addition, mutant vWF showed reduced secretion from transfected cells concomitant with increased intracellular levels. These results confirm that the deletion is the genetic defect responsible for the reduced interaction of vWF with platelets. We have designated this new variant type 2M:Milwaukee-1 vWD. Our analysis suggests that the potential frequency of this phenotype in individuals diagnosed with type 1 vWD is about 0.5%.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

  NODES
twitter 2