A three-dimensional finite element method for large elastic deformations of ventricular myocardium: II--Prolate spheroidal coordinates
- PMID: 8950649
- DOI: 10.1115/1.2796032
A three-dimensional finite element method for large elastic deformations of ventricular myocardium: II--Prolate spheroidal coordinates
Abstract
A three-dimensional finite element method for nonlinear finite elasticity is presented using prolate spheroidal coordinates. For a thick-walled ellipsoidal model of passive anisotropic left ventricle, a high-order (cubic Hermite) mesh with 3 elements gave accurate continuous stresses and strains, with a 69 percent savings in degrees of freedom (dof) versus a 70-element standard low-order model. A custom mixed-order model offered 55 percent savings in dof and 39 percent savings in solution time compared with the low-order model. A nonsymmetric 3D model of the passive canine LV was solved using 16 high-order elements. Continuous nonhomogeneous stresses and strains were obtained within 1 hour on a laboratory workstation, with an estimated solution time of less than 4 hours to model end-systole. This method represents the first practical opportunity to solve large-scale anatomically detailed models for cardiac stress analysis.
Similar articles
-
A three-dimensional finite element method for large elastic deformations of ventricular myocardium: I--Cylindrical and spherical polar coordinates.J Biomech Eng. 1996 Nov;118(4):452-63. doi: 10.1115/1.2796031. J Biomech Eng. 1996. PMID: 8950648
-
An anatomical heart model with applications to myocardial activation and ventricular mechanics.Crit Rev Biomed Eng. 1992;20(5-6):403-26. Crit Rev Biomed Eng. 1992. PMID: 1486783
-
Biventricular myocardial strains via nonrigid registration of anatomical NURBS model [corrected].IEEE Trans Med Imaging. 2006 Jan;25(1):94-112. doi: 10.1109/TMI.2005.861015. IEEE Trans Med Imaging. 2006. PMID: 16398418
-
Theoretical models in mechanics of the left ventricle.Biorheology. 1984;21(5):709-22. doi: 10.3233/bir-1984-21504. Biorheology. 1984. PMID: 6394067 Review.
-
Left ventricular wall stress compendium.Comput Methods Biomech Biomed Engin. 2012;15(10):1015-41. doi: 10.1080/10255842.2011.569885. Epub 2011 Jun 21. Comput Methods Biomech Biomed Engin. 2012. PMID: 21547783 Review.
Cited by
-
High-order finite element methods for cardiac monodomain simulations.Front Physiol. 2015 Aug 5;6:217. doi: 10.3389/fphys.2015.00217. eCollection 2015. Front Physiol. 2015. PMID: 26300783 Free PMC article.
-
Transmural gradients of myocardial structure and mechanics: Implications for fiber stress and strain in pressure overload.Prog Biophys Mol Biol. 2016 Dec;122(3):215-226. doi: 10.1016/j.pbiomolbio.2016.11.004. Epub 2016 Nov 11. Prog Biophys Mol Biol. 2016. PMID: 27845176 Free PMC article. Review.
-
Incorporation of a left ventricle finite element model defining infarction into the XCAT imaging phantom.IEEE Trans Med Imaging. 2011 Apr;30(4):915-27. doi: 10.1109/TMI.2010.2089801. Epub 2010 Oct 28. IEEE Trans Med Imaging. 2011. PMID: 21041157 Free PMC article.
-
Reconstruction of myocardial tissue motion and strain fields from displacement-encoded MR imaging.Am J Physiol Heart Circ Physiol. 2009 Sep;297(3):H1151-62. doi: 10.1152/ajpheart.00074.2009. Epub 2009 Jun 26. Am J Physiol Heart Circ Physiol. 2009. PMID: 19561315 Free PMC article.
-
An automatic service for the personalization of ventricular cardiac meshes.J R Soc Interface. 2013 Dec 11;11(91):20131023. doi: 10.1098/rsif.2013.1023. Print 2014 Feb 6. J R Soc Interface. 2013. PMID: 24335562 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources